table of contents
DTBSV(1) | BLAS routine | DTBSV(1) |
NAME¶
DTBSV - solves one of the systems of equations A*x = b, or A'*x = b,
SYNOPSIS¶
INTEGER INCX,K,LDA,N CHARACTER DIAG,TRANS,UPLO DOUBLE PRECISION A(LDA,*),X(*)
PURPOSE¶
DTBSV solves one of the systems of equations
where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals.
No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
ARGUMENTS¶
- UPLO - CHARACTER*1.
- On entry, UPLO specifies whether the matrix is an upper or lower
triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
Unchanged on exit.
- TRANS - CHARACTER*1.
- On entry, TRANS specifies the equations to be solved as follows:
TRANS = 'N' or 'n' A*x = b.
TRANS = 'T' or 't' A'*x = b.
TRANS = 'C' or 'c' A'*x = b.
Unchanged on exit.
- DIAG - CHARACTER*1.
- On entry, DIAG specifies whether or not A is unit triangular as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit triangular.
Unchanged on exit.
- N - INTEGER.
- On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit.
- K - INTEGER.
- On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit.
- A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of
the array A must contain the upper triangular band part of the matrix of
coefficients, supplied column by column, with the leading diagonal of the
matrix in row ( k + 1 ) of the array, the first super-diagonal starting at
position 2 in row k, and so on. The top left k by k triangle of the array
A is not referenced. The following program segment will transfer an upper
triangular band matrix from conventional full matrix storage to band
storage:
DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE
Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage:
DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE
Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit.
- LDA - INTEGER.
- On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit.
- X - DOUBLE PRECISION array of dimension at least
- ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x.
- INCX - INTEGER.
- On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit.
FURTHER DETAILS¶
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
November 2008 | BLAS routine |