Scroll to navigation

CGEQPF(1) LAPACK deprecated driver routine (version 3.2) CGEQPF(1)

NAME

CGEQPF - routine i deprecated and has been replaced by routine CGEQP3

SYNOPSIS

M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )

INTEGER INFO, LDA, M, N INTEGER JPVT( * ) REAL RWORK( * ) COMPLEX A( LDA, * ), TAU( * ), WORK( * )

PURPOSE

This routine is deprecated and has been replaced by routine CGEQP3. CGEQPF computes a QR factorization with column pivoting of a complex M-by-N matrix A: A*P = Q*R.

ARGUMENTS

The number of rows of the matrix A. M >= 0.
The number of columns of the matrix A. N >= 0
On entry, the M-by-N matrix A. On exit, the upper triangle of the array contains the min(M,N)-by-N upper triangular matrix R; the elements below the diagonal, together with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors.
The leading dimension of the array A. LDA >= max(1,M).
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A.
The scalar factors of the elementary reflectors.
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

FURTHER DETAILS

The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(n)
Each H(i) has the form
H = I - tau * v * v'
where tau is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). The matrix P is represented in jpvt as follows: If
jpvt(j) = i
then the jth column of P is the ith canonical unit vector. Partial column norm updating strategy modified by
Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
University of Zagreb, Croatia.
June 2006.
For more details see LAPACK Working Note 176.

November 2008 LAPACK deprecated driver routine (version 3.2)