Scroll to navigation

CLAGS2(1) LAPACK auxiliary routine (version 3.2) CLAGS2(1)

NAME

CLAGS2 - computes 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) where U = ( CSU SNU ), V = ( CSV SNV ),

SYNOPSIS

UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ )

LOGICAL UPPER REAL A1, A3, B1, B3, CSQ, CSU, CSV COMPLEX A2, B2, SNQ, SNU, SNV

PURPOSE

CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then
( -CONJG(SNU) CSU ) ( -CONJG(SNV) CSV )
Q = ( CSQ SNQ )
( -CONJG(SNQ) CSQ )
Z' denotes the conjugate transpose of Z.
The rows of the transformed A and B are parallel. Moreover, if the input 2-by-2 matrix A is not zero, then the transformed (1,1) entry of A is not zero. If the input matrices A and B are both not zero, then the transformed (2,2) element of B is not zero, except when the first rows of input A and B are parallel and the second rows are zero.

ARGUMENTS

= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A2 (input) COMPLEX A3 (input) REAL On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A.
B2 (input) COMPLEX B3 (input) REAL On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B.
SNU (output) COMPLEX The desired unitary matrix U.
SNV (output) COMPLEX The desired unitary matrix V.
SNQ (output) COMPLEX The desired unitary matrix Q.
November 2008 LAPACK auxiliary routine (version 3.2)