table of contents
CPFTRI(1) | LAPACK routine (version 3.2) | CPFTRI(1) |
NAME¶
CPFTRI - computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPFTRF
SYNOPSIS¶
- SUBROUTINE CPFTRI(
- TRANSR, UPLO, N, A, INFO )
CHARACTER TRANSR, UPLO INTEGER INFO, N COMPLEX A( 0: * )
PURPOSE¶
CPFTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPFTRF.
ARGUMENTS¶
- TRANSR (input) CHARACTER
- = 'N': The Normal TRANSR of RFP A is stored;
= 'C': The Conjugate-transpose TRANSR of RFP A is stored. - UPLO (input) CHARACTER
-
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored. - N (input) INTEGER
- The order of the matrix A. N >= 0.
- A (input/output) COMPLEX array, dimension ( N*(N+1)/2 );
- On entry, the Hermitian matrix A in RFP format. RFP format is described by
TRANSR, UPLO, and N as follows: If TRANSR = 'N'
then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
(0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as defined when TRANSR = 'N'. The contents of RFP A are defined by UPLO as follows: If UPLO = 'U' the RFP A contains the nt elements of upper packed A. If UPLO = 'L' the RFP A contains the elements of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N is odd. See the Note below for more details. On exit, the Hermitian inverse of the original matrix, in the same storage format. - INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed.
FURTHER DETAILS¶
We first consider Standard Packed Format when N is even.
We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00
11 12 13 14 15 10 11
22 23 24 25 20 21 22
33 34 35 30 31 32 33
44 45 40 41 42 43 44
55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last three
columns of AP upper. The lower triangle A(4:6,0:2) consists of
conjugate-transpose of the first three columns of AP upper. For UPLO = 'L'
the lower trapezoid A(1:6,0:2) consists of the first three columns of AP
lower. The upper triangle A(0:2,0:2) consists of conjugate-transpose of the
last three columns of AP lower. To denote conjugate we place -- above the
element. This covers the case N even and TRANSR = 'N'.
RFP A RFP A
-- -- --
03 04 05 33 43 53
-- --
13 14 15 00 44 54
--
23 24 25 10 11 55
33 34 35 20 21 22
--
00 44 45 30 31 32
-- --
01 11 55 40 41 42
-- -- --
02 12 22 50 51 52
Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
transpose of RFP A above. One therefore gets:
RFP A RFP A
-- -- -- -- -- -- -- -- -- --
03 13 23 33 00 01 02 33 00 10 20 30 40 50
-- -- -- -- -- -- -- -- -- --
04 14 24 34 44 11 12 43 44 11 21 31 41 51
-- -- -- -- -- -- -- -- -- --
05 15 25 35 45 55 22 53 54 55 22 32 42 52
We next consider Standard Packed Format when N is odd.
We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00
11 12 13 14 10 11
22 23 24 20 21 22
33 34 30 31 32 33
44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last three
columns of AP upper. The lower triangle A(3:4,0:1) consists of
conjugate-transpose of the first two columns of AP upper. For UPLO = 'L' the
lower trapezoid A(0:4,0:2) consists of the first three columns of AP lower.
The upper triangle A(0:1,1:2) consists of conjugate-transpose of the last
two columns of AP lower. To denote conjugate we place -- above the element.
This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
-- --
02 03 04 00 33 43
--
12 13 14 10 11 44
22 23 24 20 21 22
--
00 33 34 30 31 32
-- --
01 11 44 40 41 42
Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
transpose of RFP A above. One therefore gets:
RFP A RFP A
-- -- -- -- -- -- -- -- --
02 12 22 00 01 00 10 20 30 40 50
-- -- -- -- -- -- -- -- --
03 13 23 33 11 33 11 21 31 41 51
-- -- -- -- -- -- -- -- --
04 14 24 34 44 43 44 22 32 42 52
November 2008 | LAPACK routine (version 3.2) |