Scroll to navigation

DGERFS(1) LAPACK routine (version 3.2) DGERFS(1)

NAME

DGERFS - improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution

SYNOPSIS

TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )

CHARACTER TRANS INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS INTEGER IPIV( * ), IWORK( * ) DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), BERR( * ), FERR( * ), WORK( * ), X( LDX, * )

PURPOSE

DGERFS improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution.

ARGUMENTS

Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
The order of the matrix A. N >= 0.
The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.
The original N-by-N matrix A.
The leading dimension of the array A. LDA >= max(1,N).
The factors L and U from the factorization A = P*L*U as computed by DGETRF.
The leading dimension of the array AF. LDAF >= max(1,N).
The pivot indices from DGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).
The right hand side matrix B.
The leading dimension of the array B. LDB >= max(1,N).
On entry, the solution matrix X, as computed by DGETRS. On exit, the improved solution matrix X.
The leading dimension of the array X. LDX >= max(1,N).
The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.
The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

PARAMETERS

ITMAX is the maximum number of steps of iterative refinement.

November 2008 LAPACK routine (version 3.2)