Scroll to navigation

DLAGS2(1) LAPACK auxiliary routine (version 3.2) DLAGS2(1)

NAME

DLAGS2 - computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z

SYNOPSIS

UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ )

LOGICAL UPPER DOUBLE PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, SNU, SNV

PURPOSE

DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then

ARGUMENTS

= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A2 (input) DOUBLE PRECISION A3 (input) DOUBLE PRECISION On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A.
B2 (input) DOUBLE PRECISION B3 (input) DOUBLE PRECISION On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B.
SNU (output) DOUBLE PRECISION The desired orthogonal matrix U.
SNV (output) DOUBLE PRECISION The desired orthogonal matrix V.
SNQ (output) DOUBLE PRECISION The desired orthogonal matrix Q.
November 2008 LAPACK auxiliary routine (version 3.2)