table of contents
DLARFT(1) | LAPACK auxiliary routine (version 3.2) | DLARFT(1) |
NAME¶
DLARFT - forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
SYNOPSIS¶
- SUBROUTINE DLARFT(
- DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
IMPLICIT NONE CHARACTER DIRECT, STOREV INTEGER K, LDT, LDV, N DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
PURPOSE¶
DLARFT forms the triangular factor T of a real block reflector H
of order n, which is defined as a product of k elementary reflectors. If
DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; If DIRECT
= 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. If STOREV = 'C',
the vector which defines the elementary reflector H(i) is stored in the i-th
column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector H(i) is
stored in the i-th row of the array V, and
H = I - V' * T * V
ARGUMENTS¶
- DIRECT (input) CHARACTER*1
- Specifies the order in which the elementary reflectors are multiplied to
form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward) - STOREV (input) CHARACTER*1
- Specifies how the vectors which define the elementary reflectors are
stored (see also Further Details):
= 'R': rowwise - N (input) INTEGER
- The order of the block reflector H. N >= 0.
- K (input) INTEGER
- The order of the triangular factor T (= the number of elementary reflectors). K >= 1.
- V (input/output) DOUBLE PRECISION array, dimension
- (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V. See further details.
- LDV (input) INTEGER
- The leading dimension of the array V. If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary reflector H(i).
- T (output) DOUBLE PRECISION array, dimension (LDT,K)
- The k by k triangular factor T of the block reflector. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular. The rest of the array is not used.
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= K.
FURTHER DETAILS¶
The shape of the matrix V and the storage of the vectors which
define the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding array
elements are modified but restored on exit. The rest of the array is not
used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
November 2008 | LAPACK auxiliary routine (version 3.2) |