Scroll to navigation

DLARRC(1) LAPACK auxiliary routine (version 3.2) DLARRC(1)

NAME

DLARRC - the number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T if JOBT = 'L'

SYNOPSIS

JOBT, N, VL, VU, D, E, PIVMIN, EIGCNT, LCNT, RCNT, INFO )

CHARACTER JOBT INTEGER EIGCNT, INFO, LCNT, N, RCNT DOUBLE PRECISION PIVMIN, VL, VU DOUBLE PRECISION D( * ), E( * )

PURPOSE

Find the number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T if JOBT = 'L'.

ARGUMENTS

= 'T': Compute Sturm count for matrix T.
= 'L': Compute Sturm count for matrix L D L^T.
The order of the matrix. N > 0.
VU (input) DOUBLE PRECISION The lower and upper bounds for the eigenvalues.
JOBT = 'T': The N diagonal elements of the tridiagonal matrix T.
JOBT = 'L': The N diagonal elements of the diagonal matrix D.

JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
The minimum pivot in the Sturm sequence for T.
The number of eigenvalues of the symmetric tridiagonal matrix T that are in the interval (VL,VU]
RCNT (output) INTEGER The left and right negcounts of the interval.

FURTHER DETAILS

Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

November 2008 LAPACK auxiliary routine (version 3.2)