Scroll to navigation

DLARRR(1) LAPACK auxiliary routine (version 3.2) DLARRR(1)

NAME

DLARRR - tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues

SYNOPSIS

N, D, E, INFO )

INTEGER N, INFO DOUBLE PRECISION D( * ), E( * )

PURPOSE

Perform tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.

ARGUMENTS

The order of the matrix. N > 0.
The N diagonal elements of the tridiagonal matrix T.
On entry, the first (N-1) entries contain the subdiagonal elements of the tridiagonal matrix T; E(N) is set to ZERO.
INFO = 0(default) : the matrix warrants computations preserving relative accuracy. INFO = 1 : the matrix warrants computations guaranteeing only absolute accuracy.

FURTHER DETAILS

Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA

November 2008 LAPACK auxiliary routine (version 3.2)