Scroll to navigation

DORMHR(1) LAPACK routine (version 3.2) DORMHR(1)

NAME

DORMHR - overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )

CHARACTER SIDE, TRANS INTEGER IHI, ILO, INFO, LDA, LDC, LWORK, M, N DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )

PURPOSE

DORMHR overwrites the general real M-by-N matrix C with TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of IHI-ILO elementary reflectors, as returned by DGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.

= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
The number of rows of the matrix C. M >= 0.
The number of columns of the matrix C. N >= 0.
IHI (input) INTEGER ILO and IHI must have the same values as in the previous call of DGEHRD. Q is equal to the unit matrix except in the submatrix Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and ILO = 1 and IHI = 0, if M = 0; if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and ILO = 1 and IHI = 0, if N = 0.
(LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which define the elementary reflectors, as returned by DGEHRD.
The leading dimension of the array A. LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
(M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by DGEHRD.
On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
The leading dimension of the array C. LDC >= max(1,M).
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
November 2008 LAPACK routine (version 3.2)