SGEEQUB(1) | LAPACK routine (version 3.2) | SGEEQUB(1) |
NAME¶
SGEEQUB - computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number
SYNOPSIS¶
- SUBROUTINE SGEEQUB(
- M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO )
IMPLICIT NONE INTEGER INFO, LDA, M, N REAL AMAX, COLCND, ROWCND REAL A( LDA, * ), C( * ), R( * )
PURPOSE¶
SGEEQUB computes row and column scalings intended to equilibrate
an M-by-N matrix A and reduce its condition number. R returns the row scale
factors and C the column scale factors, chosen to try to make the largest
element in each row and column of the matrix B with elements
B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix.
R(i) and C(j) are restricted to be a power of the radix between SMLNUM =
smallest safe number and BIGNUM = largest safe number. Use of these scaling
factors is not guaranteed to reduce the condition number of A but works well
in practice.
This routine differs from SGEEQU by restricting the scaling factors to a power
of the radix. Baring over- and underflow, scaling by these factors
introduces no additional rounding errors. However, the scaled entries'
magnitured are no longer approximately 1 but lie between sqrt(radix) and
1/sqrt(radix).
ARGUMENTS¶
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
- A (input) REAL array, dimension (LDA,N)
- The M-by-N matrix whose equilibration factors are to be computed.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
- R (output) REAL array, dimension (M)
- If INFO = 0 or INFO > M, R contains the row scale factors for A.
- C (output) REAL array, dimension (N)
- If INFO = 0, C contains the column scale factors for A.
- ROWCND (output) REAL
- If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R.
- COLCND (output) REAL
- If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C.
- AMAX (output) REAL
- Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, and i is
<= M: the i-th row of A is exactly zero
> M: the (i-M)-th column of A is exactly zero
November 2008 | LAPACK routine (version 3.2) |