Scroll to navigation

SLAGS2(1) LAPACK auxiliary routine (version 3.2) SLAGS2(1)

NAME

SLAGS2 - computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z

SYNOPSIS

UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ )

LOGICAL UPPER REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, SNU, SNV

PURPOSE

SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then

ARGUMENTS

= .TRUE.: the input matrices A and B are upper triangular.
= .FALSE.: the input matrices A and B are lower triangular.
A2 (input) REAL A3 (input) REAL On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A.
B2 (input) REAL B3 (input) REAL On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B.
SNU (output) REAL The desired orthogonal matrix U.
SNV (output) REAL The desired orthogonal matrix V.
SNQ (output) REAL The desired orthogonal matrix Q.
November 2008 LAPACK auxiliary routine (version 3.2)