table of contents
SLARRR(1) | LAPACK auxiliary routine (version 3.2) | SLARRR(1) |
NAME¶
SLARRR - tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues
SYNOPSIS¶
- SUBROUTINE SLARRR(
- N, D, E, INFO )
INTEGER N, INFO REAL D( * ), E( * )
PURPOSE¶
Perform tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
ARGUMENTS¶
- N (input) INTEGER
- The order of the matrix. N > 0.
- D (input) REAL array, dimension (N)
- The N diagonal elements of the tridiagonal matrix T.
- E (input/output) REAL array, dimension (N)
- On entry, the first (N-1) entries contain the subdiagonal elements of the tridiagonal matrix T; E(N) is set to ZERO.
- INFO (output) INTEGER
- INFO = 0(default) : the matrix warrants computations preserving relative accuracy. INFO = 1 : the matrix warrants computations guaranteeing only absolute accuracy.
FURTHER DETAILS¶
Based on contributions by
Beresford Parlett, University of California, Berkeley, USA
Jim Demmel, University of California, Berkeley, USA
Inderjit Dhillon, University of Texas, Austin, USA
Osni Marques, LBNL/NERSC, USA
Christof Voemel, University of California, Berkeley, USA
November 2008 | LAPACK auxiliary routine (version 3.2) |