SORMBR(1) | LAPACK routine (version 3.2) | SORMBR(1) |
NAME¶
SORMBR - VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
SYNOPSIS¶
- SUBROUTINE SORMBR(
- VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
CHARACTER SIDE, TRANS, VECT INTEGER INFO, K, LDA, LDC, LWORK, M, N REAL A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
PURPOSE¶
If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': P * C C * P
TRANS = 'T': P**T * C C * P**T
Here Q and P**T are the orthogonal matrices determined by SGEBRD when reducing
a real matrix A to bidiagonal form: A = Q * B * P**T. Q and P**T are defined
as products of elementary reflectors H(i) and G(i) respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order of the
orthogonal matrix Q or P**T that is applied. If VECT = 'Q', A is assumed to
have been an NQ-by-K matrix: if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P =
G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).
ARGUMENTS¶
- VECT (input) CHARACTER*1
- = 'Q': apply Q or Q**T;
= 'P': apply P or P**T. - SIDE (input) CHARACTER*1
-
= 'L': apply Q, Q**T, P or P**T from the Left;
= 'R': apply Q, Q**T, P or P**T from the Right. - TRANS (input) CHARACTER*1
-
= 'N': No transpose, apply Q or P;
= 'T': Transpose, apply Q**T or P**T. - M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
- K (input) INTEGER
- If VECT = 'Q', the number of columns in the original matrix reduced by SGEBRD. If VECT = 'P', the number of rows in the original matrix reduced by SGEBRD. K >= 0.
- A (input) REAL array, dimension
- (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if VECT = 'P' The vectors which define the elementary reflectors H(i) and G(i), whose products determine the matrices Q and P, as returned by SGEBRD.
- LDA (input) INTEGER
- The leading dimension of the array A. If VECT = 'Q', LDA >= max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).
- TAU (input) REAL array, dimension (min(nq,K))
- TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i) which determines Q or P, as returned by SGEBRD in the array argument TAUQ or TAUP.
- C (input/output) REAL array, dimension (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q or P*C or P**T*C or C*P or C*P**T.
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
- WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- LWORK (input) INTEGER
- The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
November 2008 | LAPACK routine (version 3.2) |