Scroll to navigation

ZGETRS(1) LAPACK routine (version 3.2) ZGETRS(1)

NAME

ZGETRS - solves a system of linear equations A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF

SYNOPSIS

TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )

CHARACTER TRANS INTEGER INFO, LDA, LDB, N, NRHS INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), B( LDB, * )

PURPOSE

ZGETRS solves a system of linear equations
A * X = B, A**T * X = B, or A**H * X = B with a general N-by-N matrix A using the LU factorization computed by ZGETRF.

ARGUMENTS

Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
The order of the matrix A. N >= 0.
The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.
The factors L and U from the factorization A = P*L*U as computed by ZGETRF.
The leading dimension of the array A. LDA >= max(1,N).
The pivot indices from ZGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).
On entry, the right hand side matrix B. On exit, the solution matrix X.
The leading dimension of the array B. LDB >= max(1,N).
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
November 2008 LAPACK routine (version 3.2)