ZGGES(1) | LAPACK driver routine (version 3.2) | ZGGES(1) |
NAME¶
ZGGES - computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR)
SYNOPSIS¶
- SUBROUTINE ZGGES(
- JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, BWORK, INFO )
CHARACTER JOBVSL, JOBVSR, SORT INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM LOGICAL BWORK( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), WORK( * ) LOGICAL SELCTG EXTERNAL SELCTG
PURPOSE¶
ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
(A,B), the generalized eigenvalues, the generalized complex Schur form (S,
T), and optionally left and/or right Schur vectors (VSL and VSR). This gives
the generalized Schur factorization
(A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
where (VSR)**H is the conjugate-transpose of VSR.
Optionally, it also orders the eigenvalues so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper triangular
matrix S and the upper triangular matrix T. The leading columns of VSL and
VSR then form an unitary basis for the corresponding left and right
eigenspaces (deflating subspaces). (If only the generalized eigenvalues are
needed, use the driver ZGGEV instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio
alpha/beta = w, such that A - w*B is singular. It is usually represented as
the pair (alpha,beta), as there is a reasonable interpretation for beta=0,
and even for both being zero. A pair of matrices (S,T) is in generalized
complex Schur form if S and T are upper triangular and, in addition, the
diagonal elements of T are non-negative real numbers.
ARGUMENTS¶
- JOBVSL (input) CHARACTER*1
- = 'N': do not compute the left Schur vectors;
= 'V': compute the left Schur vectors. - JOBVSR (input) CHARACTER*1
-
= 'N': do not compute the right Schur vectors;
= 'V': compute the right Schur vectors. - SORT (input) CHARACTER*1
- Specifies whether or not to order the eigenvalues on the diagonal of the
generalized Schur form. = 'N': Eigenvalues are not ordered;
= 'S': Eigenvalues are ordered (see SELCTG). - SELCTG (external procedure) LOGICAL FUNCTION of two COMPLEX*16 arguments
- SELCTG must be declared EXTERNAL in the calling subroutine. If SORT = 'N', SELCTG is not referenced. If SORT = 'S', SELCTG is used to select eigenvalues to sort to the top left of the Schur form. An eigenvalue ALPHA(j)/BETA(j) is selected if SELCTG(ALPHA(j),BETA(j)) is true. Note that a selected complex eigenvalue may no longer satisfy SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned), in this case INFO is set to N+2 (See INFO below).
- N (input) INTEGER
- The order of the matrices A, B, VSL, and VSR. N >= 0.
- A (input/output) COMPLEX*16 array, dimension (LDA, N)
- On entry, the first of the pair of matrices. On exit, A has been overwritten by its generalized Schur form S.
- LDA (input) INTEGER
- The leading dimension of A. LDA >= max(1,N).
- B (input/output) COMPLEX*16 array, dimension (LDB, N)
- On entry, the second of the pair of matrices. On exit, B has been overwritten by its generalized Schur form T.
- LDB (input) INTEGER
- The leading dimension of B. LDB >= max(1,N).
- SDIM (output) INTEGER
- If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM = number of eigenvalues (after sorting) for which SELCTG is true.
- ALPHA (output) COMPLEX*16 array, dimension (N)
- BETA (output) COMPLEX*16 array, dimension (N) On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j), j=1,...,N are the diagonals of the complex Schur form (A,B) output by ZGGES. The BETA(j) will be non-negative real. Note: the quotients ALPHA(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHA will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B).
- VSL (output) COMPLEX*16 array, dimension (LDVSL,N)
- If JOBVSL = 'V', VSL will contain the left Schur vectors. Not referenced if JOBVSL = 'N'.
- LDVSL (input) INTEGER
- The leading dimension of the matrix VSL. LDVSL >= 1, and if JOBVSL = 'V', LDVSL >= N.
- VSR (output) COMPLEX*16 array, dimension (LDVSR,N)
- If JOBVSR = 'V', VSR will contain the right Schur vectors. Not referenced if JOBVSR = 'N'.
- LDVSR (input) INTEGER
- The leading dimension of the matrix VSR. LDVSR >= 1, and if JOBVSR = 'V', LDVSR >= N.
- WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
- RWORK (workspace) DOUBLE PRECISION array, dimension (8*N)
- BWORK (workspace) LOGICAL array, dimension (N)
- Not referenced if SORT = 'N'.
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
=1,...,N: The QZ iteration failed. (A,B) are not in Schur form, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: =N+1: other than QZ iteration failed in ZHGEQZ
=N+2: after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Generalized Schur form no longer satisfy SELCTG=.TRUE. This could also be caused due to scaling. =N+3: reordering falied in ZTGSEN.
November 2008 | LAPACK driver routine (version 3.2) |