ZROT(1) | LAPACK auxiliary routine (version 3.2) | ZROT(1) |
NAME¶
ZROT - applies a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors CX and CY are complex
SYNOPSIS¶
- SUBROUTINE ZROT(
- N, CX, INCX, CY, INCY, C, S )
INTEGER INCX, INCY, N DOUBLE PRECISION C COMPLEX*16 S COMPLEX*16 CX( * ), CY( * )
PURPOSE¶
ZROT applies a plane rotation, where the cos (C) is real and the sin (S) is complex, and the vectors CX and CY are complex.
ARGUMENTS¶
- N (input) INTEGER
- The number of elements in the vectors CX and CY.
- CX (input/output) COMPLEX*16 array, dimension (N)
- On input, the vector X. On output, CX is overwritten with C*X + S*Y.
- INCX (input) INTEGER
- The increment between successive values of CY. INCX <> 0.
- CY (input/output) COMPLEX*16 array, dimension (N)
- On input, the vector Y. On output, CY is overwritten with -CONJG(S)*X + C*Y.
- INCY (input) INTEGER
- The increment between successive values of CY. INCX <> 0.
- C (input) DOUBLE PRECISION
- S (input) COMPLEX*16 C and S define a rotation [ C S ] [ -conjg(S) C ] where C*C + S*CONJG(S) = 1.0.
November 2008 | LAPACK auxiliary routine (version 3.2) |