table of contents
ZSPTRF(1) | LAPACK routine (version 3.2) | ZSPTRF(1) |
NAME¶
ZSPTRF - computes the factorization of a complex symmetric matrix A stored in packed format using the Bunch-Kaufman diagonal pivoting method
SYNOPSIS¶
- SUBROUTINE ZSPTRF(
- UPLO, N, AP, IPIV, INFO )
CHARACTER UPLO INTEGER INFO, N INTEGER IPIV( * ) COMPLEX*16 AP( * )
PURPOSE¶
ZSPTRF computes the factorization of a complex symmetric matrix A
stored in packed format using the Bunch-Kaufman diagonal pivoting method:
A = U*D*U**T or A = L*D*L**T
where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2
diagonal blocks.
ARGUMENTS¶
- UPLO (input) CHARACTER*1
- = 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored. - N (input) INTEGER
- The order of the matrix A. N >= 0.
- AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
- On entry, the upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L, stored as a packed triangular matrix overwriting A (see below for further details).
- IPIV (output) INTEGER array, dimension (N)
- Details of the interchanges and the block structure of D. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
- INFO (output) INTEGER
-
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.
FURTHER DETAILS¶
5-96 - Based on modifications by J. Lewis, Boeing Computer
Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to 1 in
steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks D(k). P(k) is a permutation matrix as defined by IPIV(k),
and U(k) is a unit upper triangular matrix, such that if the diagonal block
D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). If s = 2, the
upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), and A(k,k), and v
overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to n in
steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks D(k). P(k) is a permutation matrix as defined by IPIV(k),
and L(k) is a unit lower triangular matrix, such that if the diagonal block
D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). If s = 2, the
lower triangle of D(k) overwrites A(k,k), A(k+1,k), and A(k+1,k+1), and v
overwrites A(k+2:n,k:k+1).
November 2008 | LAPACK routine (version 3.2) |