BTRFS-BALANCE(8) | Btrfs Manual | BTRFS-BALANCE(8) |
NAME¶
btrfs-balance - balance block groups on a btrfs filesystem
SYNOPSIS¶
btrfs balance <subcommand> <args>
DESCRIPTION¶
The primary purpose of the balance feature is to spread block groups across all devices so they match constraints defined by the respective profiles. See mkfs.btrfs(8) section PROFILES for more details. The scope of the balancing process can be further tuned by use of filters that can select the block groups to process. Balance works only on a mounted filesystem.
The balance operation is cancellable by the user. The on-disk state of the filesystem is always consistent so an unexpected interruption (eg. system crash, reboot) does not corrupt the filesystem. The progress of the balance operation is temporarily stored and will be resumed upon mount, unless the mount option skip_balance is specified.
Warning
running balance without filters will take a lot of time as it basically rewrites the entire filesystem and needs to update all block pointers.
The filters can be used to perform following actions:
The filters can be applied to a combination of block group types (data, metadata, system). Note that changing system needs the force option.
Note
the balance operation needs enough work space, ie. space that is completely unused in the filesystem, otherwise this may lead to ENOSPC reports. See the section ENOSPC for more details.
COMPATIBILITY¶
Note
The balance subcommand also exists under the btrfs filesystem namespace. This still works for backward compatibility but is deprecated and should not be used anymore.
Note
A short syntax btrfs balance <path> works due to backward compatibility but is deprecated and should not be used anymore. Use btrfs balance start command instead.
PERFORMANCE IMPLICATIONS¶
Balance operation is intense namely in the IO respect, but can be also CPU intense. It affects other actions on the filesystem. There are typically lots of data being copied from one location to another, and lots of metadata get updated.
Depending on the actual block group layout, it can be also seek-heavy. The performance on rotational devices is noticeably worse than on SSDs or fast arrays.
SUBCOMMAND¶
cancel <path>
pause <path>
resume <path>
start [options] <path>
Note
the balance command without filters will basically rewrite everything in the filesystem. The run time is potentially very long, depending on the filesystem size. To prevent starting a full balance by accident, the user is warned and has a few seconds to cancel the operation before it starts. The warning and delay can be skipped with --full-balance option.
Options
-d[<filters>]
-m[<filters>]
-s[<filters>]
-v
-f
--background|--bg
status [-v] <path>
If -v option is given, output will be verbose.
FILTERS¶
From kernel 3.3 onwards, btrfs balance can limit its action to a subset of the whole filesystem, and can be used to change the replication configuration (e.g. moving data from single to RAID1). This functionality is accessed through the -d, -m or -s options to btrfs balance start, which filter on data, metadata and system blocks respectively.
A filter has the following structure: type[=params][,type=...]
The available types are:
profiles=<profiles>
usage=<percent>, usage=<range>
The argument may be a single value or a range. The single value N means at most N percent used, equivalent to ..N range syntax. Kernels prior to 4.4 accept only the single value format. The minimum range boundary is inclusive, maximum is exclusive.
devid=<id>
drange=<range>
vrange=<range>
convert=<profile>
Note
starting with kernel 4.5, the data chunks can be converted to/from the DUP profile on a single device.
Note
starting with kernel 4.6, all profiles can be converted to/from DUP on multi-device filesystems.
limit=<number>, limit=<range>
The argument may be a single value or a range. The single value N means at most N chunks, equivalent to ..N range syntax. Kernels prior to 4.4 accept only the single value format. The range minimum and maximum are inclusive.
stripes=<range>
soft
The soft mode switch is (like every other filter) per-type. For example, this means that we can convert metadata chunks the "hard" way while converting data chunks selectively with soft switch.
Profile names, used in profiles and convert are one of: raid0, raid1, raid10, raid5, raid6, dup, single. The mixed data/metadata profiles can be converted in the same way, but it’s conversion between mixed and non-mixed is not implemented. For the constraints of the profiles please refer to mkfs.btrfs(8), section PROFILES.
ENOSPC¶
The way balance operates, it usually needs to temporarily create a new block group and move the old data there. For that it needs work space, otherwise it fails for ENOSPC reasons. This is not the same ENOSPC as if the free space is exhausted. This refers to the space on the level of block groups.
The free work space can be calculated from the output of the btrfs filesystem show command:
Label: 'BTRFS' uuid: 8a9d72cd-ead3-469d-b371-9c7203276265
Total devices 2 FS bytes used 77.03GiB
devid 1 size 53.90GiB used 51.90GiB path /dev/sdc2
devid 2 size 53.90GiB used 51.90GiB path /dev/sde1
size - used = free work space 53.90GiB - 51.90GiB = 2.00GiB
An example of a filter that does not require workspace is usage=0. This will scan through all unused block groups of a given type and will reclaim the space. After that it might be possible to run other filters.
CONVERSIONS ON MULTIPLE DEVICES
Conversion to profiles based on striping (RAID0, RAID5/6) require the work space on each device. An interrupted balance may leave partially filled block groups that might consume the work space.
EXAMPLES¶
A more comprehensive example when going from one to multiple devices, and back, can be found in section TYPICAL USECASES of btrfs-device(8).
MAKING BLOCK GROUP LAYOUT MORE COMPACT¶
The layout of block groups is not normally visible, most tools report only summarized numbers of free or used space, but there are still some hints provided.
Let’s use the following real life example and start with the output:
$ btrfs fi df /path Data, single: total=75.81GiB, used=64.44GiB System, RAID1: total=32.00MiB, used=20.00KiB Metadata, RAID1: total=15.87GiB, used=8.84GiB GlobalReserve, single: total=512.00MiB, used=0.00B
Roughly calculating for data, 75G - 64G = 11G, the used/total ratio is about 85%. How can we can interpret that:
Compacting the layout could be used on both. In the former case it would spread data of a given chunk to the others and removing it. Here we can estimate that roughly 850 MiB of data have to be moved (85% of a 1 GiB chunk).
In the latter case, targeting the partially used chunks will have to move less data and thus will be faster. A typical filter command would look like:
# btrfs balance start -dusage=50 /path Done, had to relocate 2 out of 97 chunks $ btrfs fi df /path Data, single: total=74.03GiB, used=64.43GiB System, RAID1: total=32.00MiB, used=20.00KiB Metadata, RAID1: total=15.87GiB, used=8.84GiB GlobalReserve, single: total=512.00MiB, used=0.00B
As you can see, the total amount of data is decreased by just 1 GiB, which is an expected result. Let’s see what will happen when we increase the estimated usage filter.
# btrfs balance start -dusage=85 /path Done, had to relocate 13 out of 95 chunks $ btrfs fi df /path Data, single: total=68.03GiB, used=64.43GiB System, RAID1: total=32.00MiB, used=20.00KiB Metadata, RAID1: total=15.87GiB, used=8.85GiB GlobalReserve, single: total=512.00MiB, used=0.00B
Now the used/total ratio is about 94% and we moved about 74G - 68G = 6G of data to the remaining blockgroups, ie. the 6GiB are now free of filesystem structures, and can be reused for new data or metadata block groups.
We can do a similar exercise with the metadata block groups, but this should not be typically necessary, unless the used/total ration is really off. Here the ratio is roughly 50% but the difference as an absolute number is "a few gigabytes", which can be considered normal for a workload with snapshots or reflinks updated frequently.
# btrfs balance start -musage=50 /path Done, had to relocate 4 out of 89 chunks $ btrfs fi df /path Data, single: total=68.03GiB, used=64.43GiB System, RAID1: total=32.00MiB, used=20.00KiB Metadata, RAID1: total=14.87GiB, used=8.85GiB GlobalReserve, single: total=512.00MiB, used=0.00B
Just 1 GiB decrease, which possibly means there are block groups with good utilization. Making the metadata layout more compact would in turn require updating more metadata structures, ie. lots of IO. As running out of metadata space is a more severe problem, it’s not necessary to keep the utilization ratio too high. For the purpose of this example, let’s see the effects of further compaction:
# btrfs balance start -musage=70 /path Done, had to relocate 13 out of 88 chunks $ btrfs fi df . Data, single: total=68.03GiB, used=64.43GiB System, RAID1: total=32.00MiB, used=20.00KiB Metadata, RAID1: total=11.97GiB, used=8.83GiB GlobalReserve, single: total=512.00MiB, used=0.00B
GETTING RID OF COMPLETELY UNUSED BLOCK GROUPS¶
Normally the balance operation needs a work space, to temporarily move the data before the old block groups gets removed. If there’s no work space, it ends with no space left.
There’s a special case when the block groups are completely unused, possibly left after removing lots of files or deleting snapshots. Removing empty block groups is automatic since 3.18. The same can be achieved manually with a notable exception that this operation does not require the work space. Thus it can be used to reclaim unused block groups to make it available.
# btrfs balance start -dusage=0 /path
This should lead to decrease in the total numbers in the btrfs fi df output.
EXIT STATUS¶
btrfs balance returns a zero exit status if it succeeds. Non zero is returned in case of failure.
AVAILABILITY¶
btrfs is part of btrfs-progs. Please refer to the btrfs wiki http://btrfs.wiki.kernel.org for further details.
SEE ALSO¶
08/03/2017 | Btrfs v4.9.1 |