Scroll to navigation

dsprfs.f(3) LAPACK dsprfs.f(3)

NAME

dsprfs.f -

SYNOPSIS

Functions/Subroutines


subroutine dsprfs (UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
DSPRFS

Function/Subroutine Documentation

subroutine dsprfs (characterUPLO, integerN, integerNRHS, double precision, dimension( * )AP, double precision, dimension( * )AFP, integer, dimension( * )IPIV, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, double precision, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

DSPRFS

Purpose:


DSPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric indefinite
and packed, and provides error bounds and backward error estimates
for the solution.

Parameters:

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.

AP


AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The upper or lower triangle of the symmetric matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

AFP


AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
The factored form of the matrix A. AFP contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**T or
A = L*D*L**T as computed by DSPTRF, stored as a packed
triangular matrix.

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by DSPTRF.

B


B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

X


X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DSPTRS.
On exit, the improved solution matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).

FERR


FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.

BERR


BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).

WORK


WORK is DOUBLE PRECISION array, dimension (3*N)

IWORK


IWORK is INTEGER array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Internal Parameters:


ITMAX is the maximum number of steps of iterative refinement.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 179 of file dsprfs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Sep 25 2012 Version 3.4.2