Scroll to navigation

zgerqf.f(3) LAPACK zgerqf.f(3)

NAME

zgerqf.f -

SYNOPSIS

Functions/Subroutines


subroutine zgerqf (M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZGERQF

Function/Subroutine Documentation

subroutine zgerqf (integerM, integerN, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( * )WORK, integerLWORK, integerINFO)

ZGERQF

Purpose:


ZGERQF computes an RQ factorization of a complex M-by-N matrix A:
A = R * Q.

Parameters:

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the M-by-N upper trapezoidal matrix R;
the remaining elements, with the array TAU, represent the
unitary matrix Q as a product of min(m,n) elementary
reflectors (see Further Details).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU


TAU is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK


WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:


The matrix Q is represented as a product of elementary reflectors
Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Definition at line 139 of file zgerqf.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Sep 25 2012 Version 3.4.2