Scroll to navigation

zunmbr.f(3) LAPACK zunmbr.f(3)

NAME

zunmbr.f -

SYNOPSIS

Functions/Subroutines


subroutine zunmbr (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
ZUNMBR

Function/Subroutine Documentation

subroutine zunmbr (characterVECT, characterSIDE, characterTRANS, integerM, integerN, integerK, complex*16, dimension( lda, * )A, integerLDA, complex*16, dimension( * )TAU, complex*16, dimension( ldc, * )C, integerLDC, complex*16, dimension( * )WORK, integerLWORK, integerINFO)

ZUNMBR

Purpose:


If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': P * C C * P
TRANS = 'C': P**H * C C * P**H
Here Q and P**H are the unitary matrices determined by ZGEBRD when
reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
and P**H are defined as products of elementary reflectors H(i) and
G(i) respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
order of the unitary matrix Q or P**H that is applied.
If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
if k < nq, P = G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).

Parameters:

VECT


VECT is CHARACTER*1
= 'Q': apply Q or Q**H;
= 'P': apply P or P**H.

SIDE


SIDE is CHARACTER*1
= 'L': apply Q, Q**H, P or P**H from the Left;
= 'R': apply Q, Q**H, P or P**H from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q or P;
= 'C': Conjugate transpose, apply Q**H or P**H.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
If VECT = 'Q', the number of columns in the original
matrix reduced by ZGEBRD.
If VECT = 'P', the number of rows in the original
matrix reduced by ZGEBRD.
K >= 0.

A


A is COMPLEX*16 array, dimension
(LDA,min(nq,K)) if VECT = 'Q'
(LDA,nq) if VECT = 'P'
The vectors which define the elementary reflectors H(i) and
G(i), whose products determine the matrices Q and P, as
returned by ZGEBRD.

LDA


LDA is INTEGER
The leading dimension of the array A.
If VECT = 'Q', LDA >= max(1,nq);
if VECT = 'P', LDA >= max(1,min(nq,K)).

TAU


TAU is COMPLEX*16 array, dimension (min(nq,K))
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i) which determines Q or P, as returned
by ZGEBRD in the array argument TAUQ or TAUP.

C


C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
or P*C or P**H*C or C*P or C*P**H.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M);
if N = 0 or M = 0, LWORK >= 1.
For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
optimal blocksize. (NB = 0 if M = 0 or N = 0.)
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 196 of file zunmbr.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Sep 25 2012 Version 3.4.2