Scroll to navigation

std::cauchy_distribution< _RealType >(3) Library Functions Manual std::cauchy_distribution< _RealType >(3)

NAME

std::cauchy_distribution< _RealType > -

SYNOPSIS

Classes


struct param_type

Public Types


typedef _RealType result_type

Public Member Functions


cauchy_distribution (_RealType __a=_RealType(0), _RealType __b=_RealType(1))
cauchy_distribution (const param_type &__p)
template<typename _ForwardIterator , typename _UniformRandomNumberGenerator > void __generate (_ForwardIterator __f, _ForwardIterator __t, _UniformRandomNumberGenerator &__urng)
template<typename _ForwardIterator , typename _UniformRandomNumberGenerator > void __generate (_ForwardIterator __f, _ForwardIterator __t, _UniformRandomNumberGenerator &__urng, const param_type &__p)
template<typename _UniformRandomNumberGenerator > void __generate (result_type *__f, result_type *__t, _UniformRandomNumberGenerator &__urng, const param_type &__p)
_RealType a () const
_RealType b () const
result_type max () const
result_type min () const
template<typename _UniformRandomNumberGenerator > cauchy_distribution< _RealType >
::result_type operator() (_UniformRandomNumberGenerator &__urng, const param_type &__p)"
template<typename _UniformRandomNumberGenerator > result_type operator() (_UniformRandomNumberGenerator &__urng)
template<typename _UniformRandomNumberGenerator > result_type operator() (_UniformRandomNumberGenerator &__urng, const param_type &__p)
param_type param () const
void param (const param_type &__param)
void reset ()

Friends


bool operator== (const cauchy_distribution &__d1, const cauchy_distribution &__d2)

Detailed Description

template<typename _RealType = double>class std::cauchy_distribution< _RealType >

A cauchy_distribution random number distribution.

The formula for the normal probability mass function is $p(x|a,b) = (i
b (1 + (ac{x-a}{b})^2))^{-1}$

Definition at line 2929 of file random.h.

Member Typedef Documentation

template<typename _RealType = double> typedef _RealType std::cauchy_distribution< _RealType >::result_type

The type of the range of the distribution.

Definition at line 2932 of file random.h.

Member Function Documentation

template<typename _RealType = double> result_type std::cauchy_distribution< _RealType >::max () const [inline]

Returns the least upper bound value of the distribution.

Definition at line 3020 of file random.h.

References std::numeric_limits< _Tp >::max().

template<typename _RealType = double> result_type std::cauchy_distribution< _RealType >::min () const [inline]

Returns the greatest lower bound value of the distribution.

Definition at line 3013 of file random.h.

References std::numeric_limits< _Tp >::lowest().

template<typename _RealType = double> template<typename _UniformRandomNumberGenerator > result_type std::cauchy_distribution< _RealType >::operator() (_UniformRandomNumberGenerator &__urng) [inline]

Generating functions.

Definition at line 3028 of file random.h.

template<typename _RealType = double> param_type std::cauchy_distribution< _RealType >::param () const [inline]

Returns the parameter set of the distribution.

Definition at line 2998 of file random.h.

Referenced by std::operator>>().

template<typename _RealType = double> void std::cauchy_distribution< _RealType >::param (const param_type &__param) [inline]

Sets the parameter set of the distribution.

Parameters:

__param The new parameter set of the distribution.

Definition at line 3006 of file random.h.

template<typename _RealType = double> void std::cauchy_distribution< _RealType >::reset () [inline]

Resets the distribution state.

Definition at line 2980 of file random.h.

Friends And Related Function Documentation

template<typename _RealType = double> bool operator== (const cauchy_distribution< _RealType > &__d1, const cauchy_distribution< _RealType > &__d2) [friend]

Return true if two Cauchy distributions have the same parameters.

Definition at line 3063 of file random.h.

Author

Generated automatically by Doxygen for libstdc++ from the source code.

Tue Sep 29 2020 libstdc++