table of contents
dlarfx.f(3) | LAPACK | dlarfx.f(3) |
NAME¶
dlarfx.f -
SYNOPSIS¶
Functions/Subroutines¶
subroutine dlarfx (SIDE, M, N, V, TAU, C, LDC, WORK)
DLARFX applies an elementary reflector to a general
rectangular matrix, with loop unrolling when the reflector has order
≤ 10.
Function/Subroutine Documentation¶
subroutine dlarfx (characterSIDE, integerM, integerN, double precision, dimension( * )V, double precisionTAU, double precision, dimension( ldc, * )C, integerLDC, double precision, dimension( * )WORK)¶
DLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10.
Purpose:
DLARFX applies a real elementary reflector H to a real m by n
matrix C, from either the left or the right. H is represented in the
form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix
This version uses inline code if H has order < 11.
Parameters:
SIDE
SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M
M is INTEGER
The number of rows of the matrix C.
N
N is INTEGER
The number of columns of the matrix C.
V
V is DOUBLE PRECISION array, dimension (M) if SIDE = 'L'
or (N) if SIDE = 'R'
The vector v in the representation of H.
TAU
TAU is DOUBLE PRECISION
The value tau in the representation of H.
C
C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC
LDC is INTEGER
The leading dimension of the array C. LDA >= (1,M).
WORK
WORK is DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
WORK is not referenced if H has order < 11.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
September 2012
Definition at line 121 of file dlarfx.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Sep 25 2012 | Version 3.4.2 |