Scroll to navigation

sgeqp3.f(3) LAPACK sgeqp3.f(3)

NAME

sgeqp3.f -

SYNOPSIS

Functions/Subroutines


subroutine sgeqp3 (M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO)
SGEQP3

Function/Subroutine Documentation

subroutine sgeqp3 (integerM, integerN, real, dimension( lda, * )A, integerLDA, integer, dimension( * )JPVT, real, dimension( * )TAU, real, dimension( * )WORK, integerLWORK, integerINFO)

SGEQP3

Purpose:


SGEQP3 computes a QR factorization with column pivoting of a
matrix A: A*P = Q*R using Level 3 BLAS.

Parameters:

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of the array contains the
min(M,N)-by-N upper trapezoidal matrix R; the elements below
the diagonal, together with the array TAU, represent the
orthogonal matrix Q as a product of min(M,N) elementary
reflectors.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

JPVT


JPVT is INTEGER array, dimension (N)
On entry, if JPVT(J).ne.0, the J-th column of A is permuted
to the front of A*P (a leading column); if JPVT(J)=0,
the J-th column of A is a free column.
On exit, if JPVT(J)=K, then the J-th column of A*P was the
the K-th column of A.

TAU


TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors.

WORK


WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO=0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= 3*N+1.
For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Further Details:


The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real/complex vector
with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
A(i+1:m,i), and tau in TAU(i).

Contributors:

G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA

Definition at line 152 of file sgeqp3.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Sep 25 2012 Version 3.4.2