rte_regexdev.h(3) | DPDK | rte_regexdev.h(3) |
NAME¶
rte_regexdev.h
SYNOPSIS¶
#include <rte_compat.h>
#include <rte_common.h>
#include <rte_dev.h>
#include <rte_mbuf.h>
#include 'rte_regexdev_core.h'
Data Structures¶
struct rte_regexdev_info
struct rte_regexdev_config
struct rte_regexdev_qp_conf
struct rte_regexdev_rule
struct rte_regexdev_xstats_map
struct rte_regexdev_match
struct rte_regex_ops
Macros¶
#define RTE_REGEXDEV_CAPA_RUNTIME_COMPILATION_F (1ULL
<< 0)
#define RTE_REGEXDEV_CAPA_SUPP_PCRE_START_ANCHOR_F (1ULL << 1)
#define RTE_REGEXDEV_CAPA_SUPP_PCRE_ATOMIC_GROUPING_F (1ULL << 2)
#define RTE_REGEXDEV_SUPP_PCRE_BACKTRACKING_CTRL_F (1ULL << 3)
#define RTE_REGEXDEV_SUPP_PCRE_CALLOUTS_F (1ULL << 4)
#define RTE_REGEXDEV_SUPP_PCRE_BACKREFERENCE_F (1ULL << 5)
#define RTE_REGEXDEV_SUPP_PCRE_GREEDY_F (1ULL << 6)
#define RTE_REGEXDEV_SUPP_PCRE_MATCH_ALL_F (1ULL << 7)
#define RTE_REGEXDEV_SUPP_PCRE_LOOKAROUND_ASRT_F (1ULL << 8)
#define RTE_REGEXDEV_SUPP_PCRE_MATCH_POINT_RST_F (1ULL << 9)
#define RTE_REGEXDEV_SUPP_NEWLINE_CONVENTIONS_F (1ULL << 10)
#define RTE_REGEXDEV_SUPP_PCRE_NEWLINE_SEQ_F (1ULL << 11)
#define RTE_REGEXDEV_SUPP_PCRE_POSSESSIVE_QUALIFIERS_F (1ULL <<
12)
#define RTE_REGEXDEV_SUPP_PCRE_SUBROUTINE_REFERENCES_F (1ULL <<
13)
#define RTE_REGEXDEV_SUPP_PCRE_UTF_8_F (1ULL << 14)
#define RTE_REGEXDEV_SUPP_PCRE_UTF_16_F (1ULL << 15)
#define RTE_REGEXDEV_SUPP_PCRE_UTF_32_F (1ULL << 16)
#define RTE_REGEXDEV_SUPP_PCRE_WORD_BOUNDARY_F (1ULL << 17)
#define RTE_REGEXDEV_SUPP_PCRE_FORWARD_REFERENCES_F (1ULL << 18)
#define RTE_REGEXDEV_SUPP_MATCH_AS_END_F (1ULL << 19)
#define RTE_REGEXDEV_SUPP_CROSS_BUFFER_F (1ULL << 20)
#define RTE_REGEXDEV_SUPP_MATCH_ALL_F (1ULL << 21)
#define RTE_REGEXDEV_CAPA_QUEUE_PAIR_OOS_F (1ULL << 22)
#define RTE_REGEX_PCRE_RULE_ALLOW_EMPTY_F (1ULL << 0)
#define RTE_REGEX_PCRE_RULE_ANCHORED_F (1ULL << 1)
#define RTE_REGEX_PCRE_RULE_CASELESS_F (1ULL << 2)
#define RTE_REGEX_PCRE_RULE_DOTALL_F (1ULL << 3)
#define RTE_REGEX_PCRE_RULE_DUPNAMES_F (1ULL << 4)
#define RTE_REGEX_PCRE_RULE_EXTENDED_F (1ULL << 5)
#define RTE_REGEX_PCRE_RULE_MATCH_UNSET_BACKREF_F (1ULL << 6)
#define RTE_REGEX_PCRE_RULE_MULTILINE_F (1ULL << 7)
#define RTE_REGEX_PCRE_RULE_NO_AUTO_CAPTURE_F (1ULL << 8)
#define RTE_REGEX_PCRE_RULE_UCP_F (1ULL << 9)
#define RTE_REGEX_PCRE_RULE_UNGREEDY_F (1ULL << 10)
#define RTE_REGEX_PCRE_RULE_UTF_F (1ULL << 11)
#define RTE_REGEX_PCRE_RULE_NEVER_BACKSLASH_C_F (1ULL << 12)
#define RTE_REGEXDEV_CFG_CROSS_BUFFER_SCAN_F (1ULL << 0)
#define RTE_REGEXDEV_CFG_MATCH_AS_END_F (1ULL << 1)
#define RTE_REGEXDEV_CFG_MATCH_ALL_F (1ULL << 2)
#define RTE_REGEX_QUEUE_PAIR_CFG_OOS_F (1ULL << 0)
#define RTE_REGEXDEV_XSTATS_NAME_SIZE 64
#define RTE_REGEX_OPS_REQ_GROUP_ID0_VALID_F (1 << 0)
#define RTE_REGEX_OPS_REQ_GROUP_ID1_VALID_F (1 << 1)
#define RTE_REGEX_OPS_REQ_GROUP_ID2_VALID_F (1 << 2)
#define RTE_REGEX_OPS_REQ_GROUP_ID3_VALID_F (1 << 3)
#define RTE_REGEX_OPS_REQ_STOP_ON_MATCH_F (1 << 4)
#define RTE_REGEX_OPS_REQ_MATCH_HIGH_PRIORITY_F (1 << 5)
#define RTE_REGEX_OPS_RSP_PMI_SOJ_F (1 << 0)
#define RTE_REGEX_OPS_RSP_PMI_EOJ_F (1 << 1)
#define RTE_REGEX_OPS_RSP_MAX_SCAN_TIMEOUT_F (1 << 2)
#define RTE_REGEX_OPS_RSP_MAX_MATCH_F (1 << 3)
#define RTE_REGEX_OPS_RSP_MAX_PREFIX_F (1 << 4)
#define RTE_REGEX_OPS_RSP_RESOURCE_LIMIT_REACHED_F (1 << 4)
Typedefs¶
typedef void(* regexdev_stop_flush_t) (uint8_t
dev_id, uint16_t qp_id, struct rte_regex_ops *op)
Enumerations¶
enum rte_regexdev_attr_id {
RTE_REGEXDEV_ATTR_SOCKET_ID, RTE_REGEXDEV_ATTR_MAX_MATCHES,
RTE_REGEXDEV_ATTR_MAX_SCAN_TIMEOUT,
RTE_REGEXDEV_ATTR_MAX_PREFIX }
enum rte_regexdev_rule_op { RTE_REGEX_RULE_OP_ADD,
RTE_REGEX_RULE_OP_REMOVE }
Functions¶
__rte_experimental int rte_regexdev_is_valid_dev (uint16_t
dev_id)
__rte_experimental uint8_t rte_regexdev_count (void)
__rte_experimental int rte_regexdev_get_dev_id (const char *name)
__rte_experimental int rte_regexdev_info_get (uint8_t dev_id, struct
rte_regexdev_info *dev_info)
__rte_experimental int rte_regexdev_configure (uint8_t dev_id, const
struct rte_regexdev_config *cfg)
__rte_experimental int rte_regexdev_queue_pair_setup (uint8_t dev_id,
uint16_t queue_pair_id, const struct rte_regexdev_qp_conf *qp_conf)
__rte_experimental int rte_regexdev_start (uint8_t dev_id)
__rte_experimental int rte_regexdev_stop (uint8_t dev_id)
__rte_experimental int rte_regexdev_close (uint8_t dev_id)
__rte_experimental int rte_regexdev_attr_get (uint8_t dev_id, enum
rte_regexdev_attr_id attr_id, void *attr_value)
__rte_experimental int rte_regexdev_attr_set (uint8_t dev_id, enum
rte_regexdev_attr_id attr_id, const void *attr_value)
__rte_experimental int rte_regexdev_rule_db_update (uint8_t dev_id,
const struct rte_regexdev_rule *rules, uint32_t nb_rules)
__rte_experimental int rte_regexdev_rule_db_compile_activate (uint8_t
dev_id)
__rte_experimental int rte_regexdev_rule_db_import (uint8_t dev_id,
const char *rule_db, uint32_t rule_db_len)
__rte_experimental int rte_regexdev_rule_db_export (uint8_t dev_id,
char *rule_db)
__rte_experimental int rte_regexdev_xstats_names_get (uint8_t dev_id,
struct rte_regexdev_xstats_map *xstats_map)
__rte_experimental int rte_regexdev_xstats_get (uint8_t dev_id, const
uint16_t *ids, uint64_t *values, uint16_t nb_values)
__rte_experimental int rte_regexdev_xstats_by_name_get (uint8_t dev_id,
const char *name, uint16_t *id, uint64_t *value)
__rte_experimental int rte_regexdev_xstats_reset (uint8_t dev_id, const
uint16_t *ids, uint16_t nb_ids)
__rte_experimental int rte_regexdev_selftest (uint8_t dev_id)
__rte_experimental int rte_regexdev_dump (uint8_t dev_id, FILE *f)
static __rte_experimental uint16_t rte_regexdev_enqueue_burst (uint8_t
dev_id, uint16_t qp_id, struct rte_regex_ops **ops, uint16_t nb_ops)
static __rte_experimental uint16_t rte_regexdev_dequeue_burst (uint8_t
dev_id, uint16_t qp_id, struct rte_regex_ops **ops, uint16_t nb_ops)
Detailed Description¶
RTE RegEx Device API
Defines RTE RegEx Device APIs for RegEx operations and its provisioning.
The RegEx Device API is composed of two parts:
- The application-oriented RegEx API that includes functions to setup a RegEx device (configure it, setup its queue pairs and start it), update the rule database and so on.
- The driver-oriented RegEx API that exports a function allowing a RegEx poll Mode Driver (PMD) to simultaneously register itself as a RegEx device driver.
RegEx device components and definitions:
+-----------------+ | | | o---------+ rte_regexdev_[en|de]queue_burst() | PCRE based o------+ | | | RegEx pattern | | | +--------+ | | matching engine o------+--+--o | | +------+ | | | | | queue |<==o===>|Core 0| | o----+ | | | pair 0 | | | | | | | | +--------+ +------+ +-----------------+ | | |
^ | | | +--------+
| | | | | | +------+
| | +--+--o queue |<======>|Core 1|
Rule|Database | | | pair 1 | | | +------+----------+ | | +--------+ +------+ | Group 0 | | | | +-------------+ | | | +--------+ +------+ | | Rules 0..n | | | | | | |Core 2| | +-------------+ | | +--o queue |<======>| | | Group 1 | | | pair 2 | +------+ | +-------------+ | | +--------+ | | Rules 0..n | | | | +-------------+ | | +--------+ | Group 2 | | | | +------+ | +-------------+ | | | queue |<======>|Core n| | | Rules 0..n | | +-------o pair n | | | | +-------------+ | +--------+ +------+ | Group n | | +-------------+ |<-------rte_regexdev_rule_db_update() | | | |<-------rte_regexdev_rule_db_compile_activate() | | Rules 0..n | |<-------rte_regexdev_rule_db_import() | +-------------+ |------->rte_regexdev_rule_db_export() +-----------------+
RegEx: A regular expression is a concise and flexible means for matching strings of text, such as particular characters, words, or patterns of characters. A common abbreviation for this is “RegEx”.
RegEx device: A hardware or software-based implementation of RegEx device API for PCRE based pattern matching syntax and semantics.
PCRE RegEx syntax and semantics specification: http://regexkit.sourceforge.net/Documentation/pcre/pcrepattern.html
RegEx queue pair: Each RegEx device should have one or more queue pair to transmit a burst of pattern matching request and receive a burst of receive the pattern matching response. The pattern matching request/response embedded in rte_regex_ops structure.
Rule: A pattern matching rule expressed in PCRE RegEx syntax along with Match ID and Group ID to identify the rule upon the match.
Rule database: The RegEx device accepts regular expressions and converts them into a compiled rule database that can then be used to scan data. Compilation allows the device to analyze the given pattern(s) and pre-determine how to scan for these patterns in an optimized fashion that would be far too expensive to compute at run-time. A rule database contains a set of rules that compiled in device specific binary form.
Match ID or Rule ID: A unique identifier provided at the time of rule creation for the application to identify the rule upon match.
Group ID: Group of rules can be grouped under one group ID to enable rule isolation and effective pattern matching. A unique group identifier provided at the time of rule creation for the application to identify the rule upon match.
Scan: A pattern matching request through enqueue API.
It may possible that a given RegEx device may not support all the features of PCRE. The application may probe unsupported features through struct rte_regexdev_info::pcre_unsup_flags
By default, all the functions of the RegEx Device API exported by a PMD are lock-free functions which assume to not be invoked in parallel on different logical cores to work on the same target object. For instance, the dequeue function of a PMD cannot be invoked in parallel on two logical cores to operates on same RegEx queue pair. Of course, this function can be invoked in parallel by different logical core on different queue pair. It is the responsibility of the upper level application to enforce this rule.
In all functions of the RegEx API, the RegEx device is designated by an integer >= 0 named the device identifier dev_id
At the RegEx driver level, RegEx devices are represented by a generic data structure of type rte_regexdev.
RegEx devices are dynamically registered during the PCI/SoC device probing phase performed at EAL initialization time. When a RegEx device is being probed, a rte_regexdev structure and a new device identifier are allocated for that device. Then, the regexdev_init() function supplied by the RegEx driver matching the probed device is invoked to properly initialize the device.
The role of the device init function consists of resetting the hardware or software RegEx driver implementations.
If the device init operation is successful, the correspondence between the device identifier assigned to the new device and its associated rte_regexdev structure is effectively registered. Otherwise, both the rte_regexdev structure and the device identifier are freed.
The functions exported by the application RegEx API to setup a device designated by its device identifier must be invoked in the following order:
- rte_regexdev_configure()
- rte_regexdev_queue_pair_setup()
- rte_regexdev_start()
Then, the application can invoke, in any order, the functions exported by the RegEx API to enqueue pattern matching job, dequeue pattern matching response, get the stats, update the rule database, get/set device attributes and so on
If the application wants to change the configuration (i.e. call rte_regexdev_configure() or rte_regexdev_queue_pair_setup()), it must call rte_regexdev_stop() first to stop the device and then do the reconfiguration before calling rte_regexdev_start() again. The enqueue and dequeue functions should not be invoked when the device is stopped.
Finally, an application can close a RegEx device by invoking the rte_regexdev_close() function.
Each function of the application RegEx API invokes a specific function of the PMD that controls the target device designated by its device identifier.
For this purpose, all device-specific functions of a RegEx driver are supplied through a set of pointers contained in a generic structure of type regexdev_ops. The address of the regexdev_ops structure is stored in the rte_regexdev structure by the device init function of the RegEx driver, which is invoked during the PCI/SoC device probing phase, as explained earlier.
In other words, each function of the RegEx API simply retrieves the rte_regexdev structure associated with the device identifier and performs an indirect invocation of the corresponding driver function supplied in the regexdev_ops structure of the rte_regexdev structure.
For performance reasons, the address of the fast-path functions of the RegEx driver is not contained in the regexdev_ops structure. Instead, they are directly stored at the beginning of the rte_regexdev structure to avoid an extra indirect memory access during their invocation.
RTE RegEx device drivers do not use interrupts for enqueue or dequeue operation. Instead, RegEx drivers export Poll-Mode enqueue and dequeue functions to applications.
The enqueue operation submits a burst of RegEx pattern matching request to the RegEx device and the dequeue operation gets a burst of pattern matching response for the ones submitted through enqueue operation.
Typical application utilisation of the RegEx device API will follow the following programming flow.
- rte_regexdev_configure()
- rte_regexdev_queue_pair_setup()
- rte_regexdev_rule_db_update() Needs to invoke if precompiled rule database not provided in rte_regexdev_config::rule_db for rte_regexdev_configure() and/or application needs to update rule database.
- rte_regexdev_rule_db_compile_activate() Needs to invoke if rte_regexdev_rule_db_update function was used.
- Create or reuse exiting mempool for rte_regex_ops objects.
- rte_regexdev_start()
- rte_regexdev_enqueue_burst()
- rte_regexdev_dequeue_burst()
Definition in file rte_regexdev.h.
Macro Definition Documentation¶
#define RTE_REGEXDEV_CAPA_RUNTIME_COMPILATION_F (1ULL << 0)¶
RegEx device does support compiling the rules at runtime unlike loading only the pre-built rule database using struct rte_regexdev_config::rule_db in rte_regexdev_configure()
See also:
struct rte_regexdev_info::regexdev_capa
Definition at line 276 of file rte_regexdev.h.
#define RTE_REGEXDEV_CAPA_SUPP_PCRE_START_ANCHOR_F (1ULL << 1)¶
RegEx device support PCRE Anchor to start of match flag. Example RegEx is /\Gfoo\d/. Here \G asserts position at the end of the previous match or the start of the string for the first match. This position will change each time the RegEx is applied to the subject string. If the RegEx is applied to foo1foo2Zfoo3 the first two matches will be successful for foo1foo2 and fail for Zfoo3.
See also:
Definition at line 285 of file rte_regexdev.h.
#define RTE_REGEXDEV_CAPA_SUPP_PCRE_ATOMIC_GROUPING_F (1ULL << 2)¶
RegEx device support PCRE Atomic grouping. Atomic groups are represented by (?>). An atomic group is a group that, when the RegEx engine exits from it, automatically throws away all backtracking positions remembered by any tokens inside the group. Example RegEx is a(?>bc|b)c if the given patterns are abc and abcc then a(bc|b)c matches both where as a(?>bc|b)c matches only abcc because atomic groups don't allow backtracking back to b.
See also:
Definition at line 296 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_BACKTRACKING_CTRL_F (1ULL << 3)¶
RegEx device support PCRE backtracking control verbs. Some examples of backtracking verbs are (*COMMIT), (*ACCEPT), (*FAIL), (*SKIP), (*PRUNE).
See also:
Definition at line 308 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_CALLOUTS_F (1ULL << 4)¶
RegEx device support PCRE callouts. PCRE supports calling external function in between matches by using (?C). Example RegEx ABC(?C)D if a given patter is ABCD then the RegEx engine will parse ABC perform a userdefined callout and return a successful match at D.
See also:
Definition at line 316 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_BACKREFERENCE_F (1ULL << 5)¶
RegEx device support PCRE backreference. Example RegEx is (\2ABC|(GHI))+ \2 matches the same text as most recently matched by the 2nd capturing group i.e. GHI.
See also:
Definition at line 326 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_GREEDY_F (1ULL << 6)¶
RegEx device support PCRE Greedy mode. For example if the RegEx is AB\d*? then *? represents zero or unlimited matches. In greedy mode the pattern AB12345 will be matched completely where as the ungreedy mode AB will be returned as the match.
See also:
Definition at line 334 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_MATCH_ALL_F (1ULL << 7)¶
RegEx device support match all mode. For example if the RegEx is AB\d*? then *? represents zero or unlimited matches. In match all mode the pattern AB12345 will return 6 matches. AB, AB1, AB12, AB123, AB1234, AB12345.
See also:
Definition at line 343 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_LOOKAROUND_ASRT_F (1ULL << 8)¶
RegEx device support PCRE Lookaround assertions (Zero-width assertions). Example RegEx is [a-z]+\d+(?=!{3,}) if the given pattern is dwad1234! the RegEx engine doesn't report any matches because the assert (?=!{3,}) fails. The pattern dwad123!!! would return a successful match.
See also:
Definition at line 352 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_MATCH_POINT_RST_F (1ULL << 9)¶
RegEx device doesn't support PCRE match point reset directive. Example RegEx is [a-z]+\K\d+ if the pattern is dwad123 then even though the entire pattern matches only 123 is reported as a match.
See also:
Definition at line 362 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_NEWLINE_CONVENTIONS_F (1ULL << 10)¶
RegEx support PCRE newline convention. Newline conventions are represented as follows: (*CR) carriage return (*LF) linefeed (*CRLF) carriage return, followed by linefeed (*ANYCRLF) any of the three above (*ANY) all Unicode newline sequences
See also:
Definition at line 371 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_NEWLINE_SEQ_F (1ULL << 11)¶
RegEx device support PCRE newline sequence. The escape sequence \R will match any newline sequence. It is equivalent to: (?>\r\n|\n|\x0b|\f|\r|\x85).
See also:
Definition at line 383 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_POSSESSIVE_QUALIFIERS_F (1ULL << 12)¶
RegEx device support PCRE possessive qualifiers. Example RegEx possessive qualifiers *+, ++, ?+, {m,n}+. Possessive quantifier repeats the token as many times as possible and it does not give up matches as the engine backtracks. With a possessive quantifier, the deal is all or nothing.
See also:
Definition at line 391 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_SUBROUTINE_REFERENCES_F (1ULL << 13)¶
RegEx device support PCRE Subroutine references. PCRE Subroutine references allow for sub patterns to be assessed as part of the RegEx. Example RegEx is (foo|fuzz)\g<1>+bar matches the pattern foofoofuzzfoofuzzbar.
See also:
Definition at line 401 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_UTF_8_F (1ULL << 14)¶
RegEx device support UTF-8 character encoding.
See also:
Definition at line 410 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_UTF_16_F (1ULL << 15)¶
RegEx device support UTF-16 character encoding.
See also:
Definition at line 416 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_UTF_32_F (1ULL << 16)¶
RegEx device support UTF-32 character encoding.
See also:
Definition at line 422 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_WORD_BOUNDARY_F (1ULL << 17)¶
RegEx device support word boundaries. The meta character \b represents word boundary anchor.
See also:
Definition at line 428 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_PCRE_FORWARD_REFERENCES_F (1ULL << 18)¶
RegEx device support Forward references. Forward references allow you to use a back reference to a group that appears later in the RegEx. Example RegEx is (\3ABC|(DEF|(GHI)))+ matches the following string GHIGHIABCDEF.
See also:
Definition at line 435 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_MATCH_AS_END_F (1ULL << 19)¶
RegEx device support match as end. Match as end means that the match result holds the end offset of the detected match. No len value is set. If the device doesn't support this feature it means the match result holds the starting position of match and the length of the match.
See also:
Definition at line 444 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_CROSS_BUFFER_F (1ULL << 20)¶
RegEx device support cross buffer match. Cross buffer matching means that the match can be detected even if the string was started in previous buffer. In case the device is configured as RTE_REGEXDEV_CFG_MATCH_AS_END the end offset will be relative for the first packet. For example RegEx is ABC the first buffer is xxxx second buffer yyyA and the last buffer BCzz. In case the match as end is configured the end offset will be 10.
See also:
RTE_REGEXDEV_CFG_CROSS_BUFFER_SCAN_F
RTE_REGEX_OPS_RSP_PMI_SOJ_F
RTE_REGEX_OPS_RSP_PMI_EOJ_F
Definition at line 454 of file rte_regexdev.h.
#define RTE_REGEXDEV_SUPP_MATCH_ALL_F (1ULL << 21)¶
RegEx device support match all. Match all means that the RegEx engine will return all possible matches. For example, assume the RegEx is A+b, given the input AAAb the returned matches will be: Ab, AAb and AAAb.
See also:
Definition at line 470 of file rte_regexdev.h.
#define RTE_REGEXDEV_CAPA_QUEUE_PAIR_OOS_F (1ULL << 22)¶
RegEx device supports out of order scan. Out of order scan means the response of a specific job can be returned as soon as it is ready even if previous jobs on the same queue didn't complete.
See also:
struct rte_regexdev_info::regexdev_capa
Definition at line 479 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_ALLOW_EMPTY_F (1ULL << 0)¶
When this flag is set, the pattern that can match against an empty string, such as .* are allowed.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 489 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_ANCHORED_F (1ULL << 1)¶
When this flag is set, the pattern is forced to be 'anchored', that is, it is constrained to match only at the first matching point in the string that is being searched. Similar to ^ and represented by \A.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 497 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_CASELESS_F (1ULL << 2)¶
When this flag is set, letters in the pattern match both upper and lower case letters in the subject.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 506 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_DOTALL_F (1ULL << 3)¶
When this flag is set, a dot metacharacter in the pattern matches any character, including one that indicates a newline.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 514 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_DUPNAMES_F (1ULL << 4)¶
When this flag is set, names used to identify capture groups need not be unique.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 522 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_EXTENDED_F (1ULL << 5)¶
When this flag is set, most white space characters in the pattern are totally ignored except when escaped or inside a character class.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 530 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_MATCH_UNSET_BACKREF_F (1ULL << 6)¶
When this flag is set, a backreference to an unset capture group matches an empty string.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 538 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_MULTILINE_F (1ULL << 7)¶
When this flag is set, the ^ and $ constructs match immediately following or immediately before internal newlines in the subject string, respectively, as well as at the very start and end.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 546 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_NO_AUTO_CAPTURE_F (1ULL << 8)¶
When this Flag is set, it disables the use of numbered capturing parentheses in the pattern. References to capture groups (backreferences or recursion/subroutine calls) may only refer to named groups, though the reference can be by name or by number.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 555 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_UCP_F (1ULL << 9)¶
By default, only ASCII characters are recognized, When this flag is set, Unicode properties are used instead to classify characters.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 565 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_UNGREEDY_F (1ULL << 10)¶
When this flag is set, the 'greediness' of the quantifiers is inverted so that they are not greedy by default, but become greedy if followed by ?.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 573 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_UTF_F (1ULL << 11)¶
When this flag is set, RegEx engine has to regard both the pattern and the subject strings that are subsequently processed as strings of UTF characters instead of single-code-unit strings.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 582 of file rte_regexdev.h.
#define RTE_REGEX_PCRE_RULE_NEVER_BACKSLASH_C_F (1ULL << 12)¶
This flag locks out the use of \C in the pattern that is being compiled. This escape matches one data unit, even in UTF mode which can cause unpredictable behavior in UTF-8 or UTF-16 modes, because it may leave the current matching point in the mi:set hlsearchddle of a multi-code-unit character.
See also:
struct rte_regexdev_rule::rule_flags
Definition at line 591 of file rte_regexdev.h.
#define RTE_REGEXDEV_CFG_CROSS_BUFFER_SCAN_F (1ULL << 0)¶
Cross buffer scan refers to the ability to be able to detect matches that occur across buffer boundaries, where the buffers are related to each other in some way. Enable this flag when to scan payload size greater than struct rte_regexdev_info::max_payload_size and/or matches can present across scan buffer boundaries.
See also:
struct rte_regexdev_config::dev_cfg_flags, rte_regexdev_configure()
RTE_REGEX_OPS_RSP_PMI_SOJ_F
RTE_REGEX_OPS_RSP_PMI_EOJ_F
Definition at line 652 of file rte_regexdev.h.
#define RTE_REGEXDEV_CFG_MATCH_AS_END_F (1ULL << 1)¶
Match as end is the ability to return the result as ending offset. When this flag is set, the result for each match will hold the ending offset of the match in end_offset. If this flag is not set, then the match result will hold the starting offset in start_offset, and the length of the match in len.
See also:
Definition at line 665 of file rte_regexdev.h.
#define RTE_REGEXDEV_CFG_MATCH_ALL_F (1ULL << 2)¶
Match all is the ability to return all possible results.
See also:
Definition at line 675 of file rte_regexdev.h.
#define RTE_REGEX_QUEUE_PAIR_CFG_OOS_F (1ULL << 0)¶
Out of order scan, If not set, a scan must retire after previously issued in-order scans to this queue pair. If set, this scan can be retired as soon as device returns completion. Application should not set out of order scan flag if it needs to maintain the ingress order of scan request.
See also:
rte_regexdev_queue_pair_setup()
Definition at line 751 of file rte_regexdev.h.
#define RTE_REGEXDEV_XSTATS_NAME_SIZE 64¶
Maximum name length for extended statistics counters
Definition at line 1089 of file rte_regexdev.h.
#define RTE_REGEX_OPS_REQ_GROUP_ID0_VALID_F (1 << 0)¶
Set when struct rte_regexdev_rule::group_id0 is valid.
Definition at line 1276 of file rte_regexdev.h.
#define RTE_REGEX_OPS_REQ_GROUP_ID1_VALID_F (1 << 1)¶
Set when struct rte_regexdev_rule::group_id1 is valid.
Definition at line 1279 of file rte_regexdev.h.
#define RTE_REGEX_OPS_REQ_GROUP_ID2_VALID_F (1 << 2)¶
Set when struct rte_regexdev_rule::group_id2 is valid.
Definition at line 1282 of file rte_regexdev.h.
#define RTE_REGEX_OPS_REQ_GROUP_ID3_VALID_F (1 << 3)¶
Set when struct rte_regexdev_rule::group_id3 is valid.
Definition at line 1285 of file rte_regexdev.h.
#define RTE_REGEX_OPS_REQ_STOP_ON_MATCH_F (1 << 4)¶
The RegEx engine will stop scanning and return the first match.
Definition at line 1288 of file rte_regexdev.h.
#define RTE_REGEX_OPS_REQ_MATCH_HIGH_PRIORITY_F (1 << 5)¶
In High Priority mode a maximum of one match will be returned per scan to reduce the post-processing required by the application. The match with the lowest Rule id, lowest start pointer and lowest match length will be returned.
See also:
struct rte_regex_ops::nb_matches
Definition at line 1291 of file rte_regexdev.h.
#define RTE_REGEX_OPS_RSP_PMI_SOJ_F (1 << 0)¶
Indicates that the RegEx device has encountered a partial match at the start of scan in the given buffer.
See also:
Definition at line 1303 of file rte_regexdev.h.
#define RTE_REGEX_OPS_RSP_PMI_EOJ_F (1 << 1)¶
Indicates that the RegEx device has encountered a partial match at the end of scan in the given buffer.
See also:
Definition at line 1310 of file rte_regexdev.h.
#define RTE_REGEX_OPS_RSP_MAX_SCAN_TIMEOUT_F (1 << 2)¶
Indicates that the RegEx device has exceeded the max timeout while scanning the given buffer.
See also:
Definition at line 1317 of file rte_regexdev.h.
#define RTE_REGEX_OPS_RSP_MAX_MATCH_F (1 << 3)¶
Indicates that the RegEx device has exceeded the max matches while scanning the given buffer.
See also:
Definition at line 1324 of file rte_regexdev.h.
#define RTE_REGEX_OPS_RSP_MAX_PREFIX_F (1 << 4)¶
Indicates that the RegEx device has reached the max allowed prefix length while scanning the given buffer.
See also:
Definition at line 1331 of file rte_regexdev.h.
#define RTE_REGEX_OPS_RSP_RESOURCE_LIMIT_REACHED_F (1 << 4)¶
Indicates that the RegEx device has reached the max allowed resource allowed while scanning the given buffer.
Definition at line 1338 of file rte_regexdev.h.
Typedef Documentation¶
typedef void(* regexdev_stop_flush_t) (uint8_t dev_id, uint16_t qp_id, struct rte_regex_ops *op)¶
Callback function called during rte_regexdev_stop(), invoked once per flushed RegEx op.
Definition at line 762 of file rte_regexdev.h.
Enumeration Type Documentation¶
enum rte_regexdev_attr_id¶
Enumerates RegEx device attribute identifier
Enumerator
- RTE_REGEXDEV_ATTR_SOCKET_ID
- The NUMA socket id to which the device is connected or a default of zero if the socket could not be determined. datatype: int operation: get
- RTE_REGEXDEV_ATTR_MAX_MATCHES
- Maximum number of matches per scan. datatype: uint8_t operation: get and set
See also:
- RTE_REGEXDEV_ATTR_MAX_SCAN_TIMEOUT
- Upper bound scan time in ns. datatype: uint16_t operation: get and set
See also:
- RTE_REGEXDEV_ATTR_MAX_PREFIX
- Maximum number of prefix detected per scan. This would be useful for denial of service detection. datatype: uint16_t operation: get and set
See also:
Definition at line 871 of file rte_regexdev.h.
enum rte_regexdev_rule_op¶
Enumerates RegEx rule operation.
Enumerator
- RTE_REGEX_RULE_OP_ADD
- Add RegEx rule to rule database.
- RTE_REGEX_RULE_OP_REMOVE
- Remove RegEx rule from rule database.
Definition at line 949 of file rte_regexdev.h.
Function Documentation¶
__rte_experimental int rte_regexdev_is_valid_dev (uint16_t dev_id)¶
Warning:
Check if dev_id is ready.
Parameters:
Returns:
- 0 if device state is not in ready state.
- 1 if device state is ready state.
__rte_experimental uint8_t rte_regexdev_count (void)¶
Warning:
Get the total number of RegEx devices that have been successfully initialised.
Returns:
__rte_experimental int rte_regexdev_get_dev_id (const char * name)¶
Warning:
Get the device identifier for the named RegEx device.
Parameters:
Returns:
- •
- <0: Failure to find named RegEx device.
__rte_experimental int rte_regexdev_info_get (uint8_t dev_id, struct rte_regexdev_info * dev_info)¶
Warning:
Retrieve the contextual information of a RegEx device.
Parameters:
dev_info A pointer to a structure of type rte_regexdev_info to be filled with the contextual information of the device.
Returns:
- 0: Success, driver updates the contextual information of the RegEx device
- <0: Error code returned by the driver info get function.
__rte_experimental int rte_regexdev_configure (uint8_t dev_id, const struct rte_regexdev_config * cfg)¶
Warning:
Configure a RegEx device.
This function must be invoked first before any other function in the API. This function can also be re-invoked when a device is in the stopped state.
The caller may use rte_regexdev_info_get() to get the capability of each resources available for this regex device.
Parameters:
cfg The RegEx device configuration structure.
Returns:
- •
- 0: Success, device configured. Otherwise negative errno is returned.
__rte_experimental int rte_regexdev_queue_pair_setup (uint8_t dev_id, uint16_t queue_pair_id, const struct rte_regexdev_qp_conf * qp_conf)¶
Warning:
Allocate and set up a RegEx queue pair for a RegEx device.
Parameters:
queue_pair_id The index of the RegEx queue pair to setup. The value must be in the range [0, nb_queue_pairs - 1] previously supplied to rte_regexdev_configure().
qp_conf The pointer to the configuration data to be used for the RegEx queue pair. NULL value is allowed, in which case default configuration used.
Returns:
__rte_experimental int rte_regexdev_start (uint8_t dev_id)¶
Warning:
Start a RegEx device.
The device start step is the last one and consists of setting the RegEx queues to start accepting the pattern matching scan requests.
On success, all basic functions exported by the API (RegEx enqueue, RegEx dequeue and so on) can be invoked.
Parameters:
Returns:
__rte_experimental int rte_regexdev_stop (uint8_t dev_id)¶
Warning:
Stop a RegEx device.
Stop a RegEx device. The device can be restarted with a call to rte_regexdev_start().
This function causes all queued response regex ops to be drained in the response queue. While draining ops out of the device, struct rte_regexdev_qp_conf::cb will be invoked for each ops.
Parameters:
Returns:
__rte_experimental int rte_regexdev_close (uint8_t dev_id)¶
Warning:
Close a RegEx device. The device cannot be restarted!
Parameters:
Returns:
__rte_experimental int rte_regexdev_attr_get (uint8_t dev_id, enum rte_regexdev_attr_id attr_id, void * attr_value)¶
Warning:
Get an attribute from a RegEx device.
Parameters:
attr_id The attribute ID to retrieve.
attr_value A pointer that will be filled in with the attribute value if successful.
Returns:
- 0: Successfully retrieved attribute value.
- -EINVAL: Invalid device or attr_id provided, or attr_value is NULL.
- -ENOTSUP: if the device doesn't support specific attr_id.
__rte_experimental int rte_regexdev_attr_set (uint8_t dev_id, enum rte_regexdev_attr_id attr_id, const void * attr_value)¶
Warning:
Set an attribute to a RegEx device.
Parameters:
attr_id The attribute ID to retrieve.
attr_value Pointer that will be filled in with the attribute value by the application.
Returns:
- 0: Successfully applied the attribute value.
- -EINVAL: Invalid device or attr_id provided, or attr_value is NULL.
- -ENOTSUP: if the device doesn't support specific attr_id.
__rte_experimental int rte_regexdev_rule_db_update (uint8_t dev_id, const struct rte_regexdev_rule * rules, uint32_t nb_rules)¶
Warning:
Update the local rule set. This functions only modify the rule set in memory. In order for the changes to take effect, the function rte_regexdev_rule_db_compile_active must be called.
Parameters:
rules Points to an array of nb_rules objects of type rte_regexdev_rule structure which contain the regex rules attributes to be updated in rule database.
nb_rules The number of PCRE rules to update the rule database.
Returns:
- -EINVAL: Invalid device ID or rules is NULL
- -ENOTSUP: The last processed rule is not supported on this device.
- -ENOSPC: No space available in rule database.
See also:
__rte_experimental int rte_regexdev_rule_db_compile_activate (uint8_t dev_id)¶
Warning:
Compile local rule set and burn the complied result to the RegEx device.
Parameters:
Returns:
See also:
__rte_experimental int rte_regexdev_rule_db_import (uint8_t dev_id, const char * rule_db, uint32_t rule_db_len)¶
Warning:
Import a prebuilt rule database from a buffer to a RegEx device.
Parameters:
rule_db Points to prebuilt rule database.
rule_db_len Length of the rule database.
Returns:
- 0: Successfully updated the prebuilt rule database.
- -EINVAL: Invalid device ID or rule_db is NULL
- -ENOTSUP: Rule database import is not supported on this device.
- -ENOSPC: No space available in rule database.
See also:
__rte_experimental int rte_regexdev_rule_db_export (uint8_t dev_id, char * rule_db)¶
Warning:
Export the prebuilt rule database from a RegEx device to the buffer.
Parameters:
rule_db Block of memory to insert the rule database. Must be at least size in capacity. If set to NULL, function returns required capacity.
Returns:
- 0: Successfully exported the prebuilt rule database.
- size: If rule_db set to NULL then required capacity for rule_db
- -EINVAL: Invalid device ID
- -ENOTSUP: Rule database export is not supported on this device.
See also:
__rte_experimental int rte_regexdev_xstats_names_get (uint8_t dev_id, struct rte_regexdev_xstats_map * xstats_map)¶
Warning:
Retrieve names of extended statistics of a regex device.
Parameters:
xstats_map Block of memory to insert id and names into. Must be at least size in capacity. If set to NULL, function returns required capacity.
Returns:
- Positive value on success: -The return value is the number of entries filled in the stats map. -If xstats_map set to NULL then required capacity for xstats_map.
- Negative value on error: -ENODEV for invalid dev_id -ENOTSUP if the device doesn't support this function.
__rte_experimental int rte_regexdev_xstats_get (uint8_t dev_id, const uint16_t * ids, uint64_t * values, uint16_t nb_values)¶
Warning:
Retrieve extended statistics of an regex device.
Parameters:
ids The id numbers of the stats to get. The ids can be got from the stat position in the stat list from rte_regexdev_xstats_names_get(), or by using rte_regexdev_xstats_by_name_get().
values The values for each stats request by ID.
nb_values The number of stats requested.
Returns:
- Positive value: number of stat entries filled into the values array
- Negative value on error: -ENODEV for invalid dev_id -ENOTSUP if the device doesn't support this function.
__rte_experimental int rte_regexdev_xstats_by_name_get (uint8_t dev_id, const char * name, uint16_t * id, uint64_t * value)¶
Warning:
Retrieve the value of a single stat by requesting it by name.
Parameters:
name The stat name to retrieve.
id If non-NULL, the numerical id of the stat will be returned, so that further requests for the stat can be got using rte_regexdev_xstats_get, which will be faster as it doesn't need to scan a list of names for the stat.
value Must be non-NULL, retrieved xstat value will be stored in this address.
Returns:
- 0: Successfully retrieved xstat value.
- -EINVAL: invalid parameters
- -ENOTSUP: if not supported.
__rte_experimental int rte_regexdev_xstats_reset (uint8_t dev_id, const uint16_t * ids, uint16_t nb_ids)¶
Warning:
Reset the values of the xstats of the selected component in the device.
Parameters:
ids Selects specific statistics to be reset. When NULL, all statistics will be reset. If non-NULL, must point to array of at least nb_ids size.
nb_ids The number of ids available from the ids array. Ignored when ids is NULL.
Returns:
- 0: Successfully reset the statistics to zero.
- -EINVAL: invalid parameters.
- -ENOTSUP: if not supported.
__rte_experimental int rte_regexdev_selftest (uint8_t dev_id)¶
Warning:
Trigger the RegEx device self test.
Parameters:
Returns:
- 0: Selftest successful.
- -ENOTSUP if the device doesn't support selftest.
- other values < 0 on failure.
__rte_experimental int rte_regexdev_dump (uint8_t dev_id, FILE * f)¶
Warning:
Dump internal information about dev_id to the FILE* provided in f.
Parameters:
f A pointer to a file for output.
Returns:
static __rte_experimental uint16_t rte_regexdev_enqueue_burst (uint8_t dev_id, uint16_t qp_id, struct rte_regex_ops ** ops, uint16_t nb_ops) [inline], [static]¶
Warning:
Enqueue a burst of scan request on a RegEx device.
The rte_regexdev_enqueue_burst() function is invoked to place regex operations on the queue qp_id of the device designated by its dev_id.
The nb_ops parameter is the number of operations to process which are supplied in the ops array of rte_regexdev_op structures.
The rte_regexdev_enqueue_burst() function returns the number of operations it actually enqueued for processing. A return value equal to nb_ops means that all packets have been enqueued.
Parameters:
qp_id The index of the queue pair which packets are to be enqueued for processing. The value must be in the range [0, nb_queue_pairs - 1] previously supplied to rte_regexdev_configure().
ops The address of an array of nb_ops pointers to rte_regexdev_op structures which contain the regex operations to be processed.
nb_ops The number of operations to process.
Returns:
Definition at line 1469 of file rte_regexdev.h.
static __rte_experimental uint16_t rte_regexdev_dequeue_burst (uint8_t dev_id, uint16_t qp_id, struct rte_regex_ops ** ops, uint16_t nb_ops) [inline], [static]¶
Warning:
Dequeue a burst of scan response from a queue on the RegEx device. The dequeued operation are stored in rte_regexdev_op structures whose pointers are supplied in the ops array.
The rte_regexdev_dequeue_burst() function returns the number of ops actually dequeued, which is the number of rte_regexdev_op data structures effectively supplied into the ops array.
A return value equal to nb_ops indicates that the queue contained at least nb_ops operations, and this is likely to signify that other processed operations remain in the devices output queue. Applications implementing a 'retrieve as many processed operations as possible' policy can check this specific case and keep invoking the rte_regexdev_dequeue_burst() function until a value less than nb_ops is returned.
The rte_regexdev_dequeue_burst() function does not provide any error notification to avoid the corresponding overhead.
Parameters:
qp_id The index of the queue pair from which to retrieve processed packets. The value must be in the range [0, nb_queue_pairs - 1] previously supplied to rte_regexdev_configure().
ops The address of an array of pointers to rte_regexdev_op structures that must be large enough to store nb_ops pointers in it.
nb_ops The maximum number of operations to dequeue.
Returns:
Definition at line 1529 of file rte_regexdev.h.
Author¶
Generated automatically by Doxygen for DPDK from the source code.
Thu May 23 2024 | Version 23.11.0 |