table of contents
cgebd2.f(3) | LAPACK | cgebd2.f(3) |
NAME¶
cgebd2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine cgebd2 (M, N, A, LDA, D, E, TAUQ,
TAUP, WORK, INFO)
CGEBD2 reduces a general matrix to bidiagonal form using an unblocked
algorithm.
Function/Subroutine Documentation¶
subroutine cgebd2 (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) D, real, dimension( * ) E, complex, dimension( * ) TAUQ, complex, dimension( * ) TAUP, complex, dimension( * ) WORK, integer INFO)¶
CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
Purpose:
CGEBD2 reduces a complex general m by n matrix A to upper or lower
real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
Parameters:
M
M is INTEGER
The number of rows in the matrix A. M >= 0.
N
N is INTEGER
The number of columns in the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the unitary matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the unitary matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the unitary matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the unitary matrix P as
a product of elementary reflectors.
See Further Details.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
D
D is REAL array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).
E
E is REAL array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
TAUQ
TAUQ is COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the unitary matrix Q. See Further Details.
TAUP
TAUP is COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the unitary matrix P. See Further Details.
WORK
WORK is COMPLEX array, dimension (max(M,N))
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2017
Further Details:
The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
where tauq and taup are complex scalars, and v and u are complex
vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
where tauq and taup are complex scalars, v and u are complex vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).
Definition at line 192 of file cgebd2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |