Scroll to navigation

cla_porcond_c.f(3) LAPACK cla_porcond_c.f(3)

NAME

cla_porcond_c.f

SYNOPSIS

Functions/Subroutines


real function cla_porcond_c (UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK, RWORK)
CLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices.

Function/Subroutine Documentation

real function cla_porcond_c (character UPLO, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF, real, dimension( * ) C, logical CAPPLY, integer INFO, complex, dimension( * ) WORK, real, dimension( * ) RWORK)

CLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positive-definite matrices.

Purpose:


CLA_PORCOND_C Computes the infinity norm condition number of
op(A) * inv(diag(C)) where C is a REAL vector

Parameters:

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the N-by-N matrix A

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

AF


AF is COMPLEX array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by CPOTRF.

LDAF


LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).

C


C is REAL array, dimension (N)
The vector C in the formula op(A) * inv(diag(C)).

CAPPLY


CAPPLY is LOGICAL
If .TRUE. then access the vector C in the formula above.

INFO


INFO is INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid.

WORK


WORK is COMPLEX array, dimension (2*N).
Workspace.

RWORK


RWORK is REAL array, dimension (N).
Workspace.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

June 2016

Definition at line 132 of file cla_porcond_c.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0