Scroll to navigation

ctgex2.f(3) LAPACK ctgex2.f(3)

NAME

ctgex2.f

SYNOPSIS

Functions/Subroutines


subroutine ctgex2 (WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1, INFO)
CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.

Function/Subroutine Documentation

subroutine ctgex2 (logical WANTQ, logical WANTZ, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( ldq, * ) Q, integer LDQ, complex, dimension( ldz, * ) Z, integer LDZ, integer J1, integer INFO)

CTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.

Purpose:


CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
in an upper triangular matrix pair (A, B) by an unitary equivalence
transformation.
(A, B) must be in generalized Schur canonical form, that is, A and
B are both upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H

Parameters:

WANTQ


WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.

WANTZ


WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

A


A is COMPLEX array, dimension (LDA,N)
On entry, the matrix A in the pair (A, B).
On exit, the updated matrix A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).

B


B is COMPLEX array, dimension (LDB,N)
On entry, the matrix B in the pair (A, B).
On exit, the updated matrix B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).

Q


Q is COMPLEX array, dimension (LDQ,N)
If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
the updated matrix Q.
Not referenced if WANTQ = .FALSE..

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1;
If WANTQ = .TRUE., LDQ >= N.

Z


Z is COMPLEX array, dimension (LDZ,N)
If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
the updated matrix Z.
Not referenced if WANTZ = .FALSE..

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.

J1


J1 is INTEGER
The index to the first block (A11, B11).

INFO


INFO is INTEGER
=0: Successful exit.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

June 2017

Further Details:

In the current code both weak and strong stability tests are performed. The user can omit the strong stability test by changing the internal logical parameter WANDS to .FALSE.. See ref. [2] for details.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:

[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF-94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.

Definition at line 192 of file ctgex2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0