Scroll to navigation

ctrsna.f(3) LAPACK ctrsna.f(3)

NAME

ctrsna.f

SYNOPSIS

Functions/Subroutines


subroutine ctrsna (JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK, INFO)
CTRSNA

Function/Subroutine Documentation

subroutine ctrsna (character JOB, character HOWMNY, logical, dimension( * ) SELECT, integer N, complex, dimension( ldt, * ) T, integer LDT, complex, dimension( ldvl, * ) VL, integer LDVL, complex, dimension( ldvr, * ) VR, integer LDVR, real, dimension( * ) S, real, dimension( * ) SEP, integer MM, integer M, complex, dimension( ldwork, * ) WORK, integer LDWORK, real, dimension( * ) RWORK, integer INFO)

CTRSNA

Purpose:


CTRSNA estimates reciprocal condition numbers for specified
eigenvalues and/or right eigenvectors of a complex upper triangular
matrix T (or of any matrix Q*T*Q**H with Q unitary).

Parameters:

JOB


JOB is CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
= 'E': for eigenvalues only (S);
= 'V': for eigenvectors only (SEP);
= 'B': for both eigenvalues and eigenvectors (S and SEP).

HOWMNY


HOWMNY is CHARACTER*1
= 'A': compute condition numbers for all eigenpairs;
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.

SELECT


SELECT is LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the j-th eigenpair, SELECT(j) must be set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.

N


N is INTEGER
The order of the matrix T. N >= 0.

T


T is COMPLEX array, dimension (LDT,N)
The upper triangular matrix T.

LDT


LDT is INTEGER
The leading dimension of the array T. LDT >= max(1,N).

VL


VL is COMPLEX array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of T
(or of any Q*T*Q**H with Q unitary), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VL, as returned by
CHSEIN or CTREVC.
If JOB = 'V', VL is not referenced.

LDVL


LDVL is INTEGER
The leading dimension of the array VL.
LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.

VR


VR is COMPLEX array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of T
(or of any Q*T*Q**H with Q unitary), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VR, as returned by
CHSEIN or CTREVC.
If JOB = 'V', VR is not referenced.

LDVR


LDVR is INTEGER
The leading dimension of the array VR.
LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.

S


S is REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. Thus S(j), SEP(j), and the j-th columns of VL and VR
all correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.

SEP


SEP is REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array.
If JOB = 'E', SEP is not referenced.

MM


MM is INTEGER
The number of elements in the arrays S (if JOB = 'E' or 'B')
and/or SEP (if JOB = 'V' or 'B'). MM >= M.

M


M is INTEGER
The number of elements of the arrays S and/or SEP actually
used to store the estimated condition numbers.
If HOWMNY = 'A', M is set to N.

WORK


WORK is COMPLEX array, dimension (LDWORK,N+6)
If JOB = 'E', WORK is not referenced.

LDWORK


LDWORK is INTEGER
The leading dimension of the array WORK.
LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.

RWORK


RWORK is REAL array, dimension (N)
If JOB = 'E', RWORK is not referenced.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:


The reciprocal of the condition number of an eigenvalue lambda is
defined as
S(lambda) = |v**H*u| / (norm(u)*norm(v))
where u and v are the right and left eigenvectors of T corresponding
to lambda; v**H denotes the conjugate transpose of v, and norm(u)
denotes the Euclidean norm. These reciprocal condition numbers always
lie between zero (very badly conditioned) and one (very well
conditioned). If n = 1, S(lambda) is defined to be 1.
An approximate error bound for a computed eigenvalue W(i) is given by
EPS * norm(T) / S(i)
where EPS is the machine precision.
The reciprocal of the condition number of the right eigenvector u
corresponding to lambda is defined as follows. Suppose
T = ( lambda c )
( 0 T22 )
Then the reciprocal condition number is
SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
where sigma-min denotes the smallest singular value. We approximate
the smallest singular value by the reciprocal of an estimate of the
one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
defined to be abs(T(1,1)).
An approximate error bound for a computed right eigenvector VR(i)
is given by
EPS * norm(T) / SEP(i)

Definition at line 251 of file ctrsna.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0