Scroll to navigation

dgebrd.f(3) LAPACK dgebrd.f(3)

NAME

dgebrd.f

SYNOPSIS

Functions/Subroutines


subroutine dgebrd (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)
DGEBRD

Function/Subroutine Documentation

subroutine dgebrd (integer M, integer N, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( * ) TAUQ, double precision, dimension( * ) TAUP, double precision, dimension( * ) WORK, integer LWORK, integer INFO)

DGEBRD

Purpose:


DGEBRD reduces a general real M-by-N matrix A to upper or lower
bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

Parameters:

M


M is INTEGER
The number of rows in the matrix A. M >= 0.

N


N is INTEGER
The number of columns in the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the orthogonal matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the orthogonal matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the orthogonal matrix P as
a product of elementary reflectors.
See Further Details.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

D


D is DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).

E


E is DOUBLE PRECISION array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

TAUQ


TAUQ is DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix Q. See Further Details.

TAUP


TAUP is DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the orthogonal matrix P. See Further Details.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The length of the array WORK. LWORK >= max(1,M,N).
For optimum performance LWORK >= (M+N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2017

Further Details:


The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T
where tauq and taup are real scalars, and v and u are real vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).

Definition at line 207 of file dgebrd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0