Scroll to navigation

dgelqf.f(3) LAPACK dgelqf.f(3)

NAME

dgelqf.f

SYNOPSIS

Functions/Subroutines


subroutine dgelqf (M, N, A, LDA, TAU, WORK, LWORK, INFO)
DGELQF

Function/Subroutine Documentation

subroutine dgelqf (integer M, integer N, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) TAU, double precision, dimension( * ) WORK, integer LWORK, integer INFO)

DGELQF

Purpose:


DGELQF computes an LQ factorization of a real M-by-N matrix A:
A = L * Q.

Parameters:

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and below the diagonal of the array
contain the m-by-min(m,n) lower trapezoidal matrix L (L is
lower triangular if m <= n); the elements above the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU


TAU is DOUBLE PRECISION array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,M).
For optimum performance LWORK >= M*NB, where NB is the
optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:


The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
and tau in TAU(i).

Definition at line 137 of file dgelqf.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0