table of contents
dgemqr.f(3) | LAPACK | dgemqr.f(3) |
NAME¶
dgemqr.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dgemqr (SIDE, TRANS, M, N, K, A,
LDA, T, TSIZE, C, LDC, WORK, LWORK, INFO)
Function/Subroutine Documentation¶
subroutine dgemqr (character SIDE, character TRANS, integer M, integer N, integer K, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) T, integer TSIZE, double precision, dimension( ldc, * ) C, integer LDC, double precision, dimension( * ) WORK, integer LWORK, integer INFO)¶
Purpose:
DGEMQR overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
where Q is a real orthogonal matrix defined as the product of blocked elementary reflectors computed by tall skinny QR factorization (DGEQR)
Parameters:
SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M
M is INTEGER
The number of rows of the matrix A. M >=0.
N
N is INTEGER
The number of columns of the matrix C. N >= 0.
K
K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,K)
Part of the data structure to represent Q as returned by DGEQR.
LDA
LDA is INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
T
T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE)).
Part of the data structure to represent Q as returned by DGEQR.
TSIZE
TSIZE is INTEGER
The dimension of the array T. TSIZE >= 5.
C
C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
(workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed. The routine
only calculates the size of the WORK array, returns this
value as WORK(1), and no error message related to WORK
is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
These details are particular for this LAPACK implementation. Users should not take them for granted. These details may change in the future, and are unlikely not true for another LAPACK implementation. These details are relevant if one wants to try to understand the code. They are not part of the interface.
In this version,
T(2): row block size (MB) T(3): column block size (NB) T(6:TSIZE): data structure needed for Q, computed by DLATSQR or DGEQRT
Depending on the matrix dimensions M and N, and row and column block sizes MB and NB returned by ILAENV, DGEQR will use either DLATSQR (if the matrix is tall-and-skinny) or DGEQRT to compute the QR factorization. This version of DGEMQR will use either DLAMTSQR or DGEMQRT to multiply matrix Q by another matrix. Further Details in DLATMSQR or DGEMQRT.
Definition at line 171 of file dgemqr.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |