Scroll to navigation

dggevx.f(3) LAPACK dggevx.f(3)

NAME

dggevx.f

SYNOPSIS

Functions/Subroutines


subroutine dggevx (BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, RCONDV, WORK, LWORK, IWORK, BWORK, INFO)
DGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Function/Subroutine Documentation

subroutine dggevx (character BALANC, character JOBVL, character JOBVR, character SENSE, integer N, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldb, * ) B, integer LDB, double precision, dimension( * ) ALPHAR, double precision, dimension( * ) ALPHAI, double precision, dimension( * ) BETA, double precision, dimension( ldvl, * ) VL, integer LDVL, double precision, dimension( ldvr, * ) VR, integer LDVR, integer ILO, integer IHI, double precision, dimension( * ) LSCALE, double precision, dimension( * ) RSCALE, double precision ABNRM, double precision BBNRM, double precision, dimension( * ) RCONDE, double precision, dimension( * ) RCONDV, double precision, dimension( * ) WORK, integer LWORK, integer, dimension( * ) IWORK, logical, dimension( * ) BWORK, integer INFO)

DGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Purpose:


DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
Optionally also, it computes a balancing transformation to improve
the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
the eigenvalues (RCONDE), and reciprocal condition numbers for the
right eigenvectors (RCONDV).
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j) .
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B.
where u(j)**H is the conjugate-transpose of u(j).

Parameters:

BALANC


BALANC is CHARACTER*1
Specifies the balance option to be performed.
= 'N': do not diagonally scale or permute;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
Computed reciprocal condition numbers will be for the
matrices after permuting and/or balancing. Permuting does
not change condition numbers (in exact arithmetic), but
balancing does.

JOBVL


JOBVL is CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.

JOBVR


JOBVR is CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.

SENSE


SENSE is CHARACTER*1
Determines which reciprocal condition numbers are computed.
= 'N': none are computed;
= 'E': computed for eigenvalues only;
= 'V': computed for eigenvectors only;
= 'B': computed for eigenvalues and eigenvectors.

N


N is INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.

A


A is DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then A contains the first part of the real Schur
form of the "balanced" versions of the input A and B.

LDA


LDA is INTEGER
The leading dimension of A. LDA >= max(1,N).

B


B is DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
or both, then B contains the second part of the real Schur
form of the "balanced" versions of the input A and B.

LDB


LDB is INTEGER
The leading dimension of B. LDB >= max(1,N).

ALPHAR


ALPHAR is DOUBLE PRECISION array, dimension (N)

ALPHAI


ALPHAI is DOUBLE PRECISION array, dimension (N)

BETA


BETA is DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).

VL


VL is DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVL = 'N'.

LDVL


LDVL is INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.

VR


VR is DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part) + abs(imag. part) = 1.
Not referenced if JOBVR = 'N'.

LDVR


LDVR is INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.

ILO


ILO is INTEGER

IHI


IHI is INTEGER
ILO and IHI are integer values such that on exit
A(i,j) = 0 and B(i,j) = 0 if i > j and
j = 1,...,ILO-1 or i = IHI+1,...,N.
If BALANC = 'N' or 'S', ILO = 1 and IHI = N.

LSCALE


LSCALE is DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the left side of A and B. If PL(j) is the index of the
row interchanged with row j, and DL(j) is the scaling
factor applied to row j, then
LSCALE(j) = PL(j) for j = 1,...,ILO-1
= DL(j) for j = ILO,...,IHI
= PL(j) for j = IHI+1,...,N.
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.

RSCALE


RSCALE is DOUBLE PRECISION array, dimension (N)
Details of the permutations and scaling factors applied
to the right side of A and B. If PR(j) is the index of the
column interchanged with column j, and DR(j) is the scaling
factor applied to column j, then
RSCALE(j) = PR(j) for j = 1,...,ILO-1
= DR(j) for j = ILO,...,IHI
= PR(j) for j = IHI+1,...,N
The order in which the interchanges are made is N to IHI+1,
then 1 to ILO-1.

ABNRM


ABNRM is DOUBLE PRECISION
The one-norm of the balanced matrix A.

BBNRM


BBNRM is DOUBLE PRECISION
The one-norm of the balanced matrix B.

RCONDE


RCONDE is DOUBLE PRECISION array, dimension (N)
If SENSE = 'E' or 'B', the reciprocal condition numbers of
the eigenvalues, stored in consecutive elements of the array.
For a complex conjugate pair of eigenvalues two consecutive
elements of RCONDE are set to the same value. Thus RCONDE(j),
RCONDV(j), and the j-th columns of VL and VR all correspond
to the j-th eigenpair.
If SENSE = 'N or 'V', RCONDE is not referenced.

RCONDV


RCONDV is DOUBLE PRECISION array, dimension (N)
If SENSE = 'V' or 'B', the estimated reciprocal condition
numbers of the eigenvectors, stored in consecutive elements
of the array. For a complex eigenvector two consecutive
elements of RCONDV are set to the same value. If the
eigenvalues cannot be reordered to compute RCONDV(j),
RCONDV(j) is set to 0; this can only occur when the true
value would be very small anyway.
If SENSE = 'N' or 'E', RCONDV is not referenced.

WORK


WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,2*N).
If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
LWORK >= max(1,6*N).
If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

IWORK


IWORK is INTEGER array, dimension (N+6)
If SENSE = 'E', IWORK is not referenced.

BWORK


BWORK is LOGICAL array, dimension (N)
If SENSE = 'N', BWORK is not referenced.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ.
=N+2: error return from DTGEVC.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

April 2012

Further Details:


Balancing a matrix pair (A,B) includes, first, permuting rows and
columns to isolate eigenvalues, second, applying diagonal similarity
transformation to the rows and columns to make the rows and columns
as close in norm as possible. The computed reciprocal condition
numbers correspond to the balanced matrix. Permuting rows and columns
will not change the condition numbers (in exact arithmetic) but
diagonal scaling will. For further explanation of balancing, see
section 4.11.1.2 of LAPACK Users' Guide.
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
An approximate error bound for the angle between the i-th computed
eigenvector VL(i) or VR(i) is given by
EPS * norm(ABNRM, BBNRM) / DIF(i).
For further explanation of the reciprocal condition numbers RCONDE
and RCONDV, see section 4.11 of LAPACK User's Guide.

Definition at line 393 of file dggevx.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0