table of contents
dlaed5.f(3) | LAPACK | dlaed5.f(3) |
NAME¶
dlaed5.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dlaed5 (I, D, Z, DELTA, RHO, DLAM)
DLAED5 used by sstedc. Solves the 2-by-2 secular equation.
Function/Subroutine Documentation¶
subroutine dlaed5 (integer I, double precision, dimension( 2 ) D, double precision, dimension( 2 ) Z, double precision, dimension( 2 ) DELTA, double precision RHO, double precision DLAM)¶
DLAED5 used by sstedc. Solves the 2-by-2 secular equation.
Purpose:
This subroutine computes the I-th eigenvalue of a symmetric rank-one
modification of a 2-by-2 diagonal matrix
diag( D ) + RHO * Z * transpose(Z) .
The diagonal elements in the array D are assumed to satisfy
D(i) < D(j) for i < j .
We also assume RHO > 0 and that the Euclidean norm of the vector
Z is one.
Parameters:
I
I is INTEGER
The index of the eigenvalue to be computed. I = 1 or I = 2.
D
D is DOUBLE PRECISION array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z
Z is DOUBLE PRECISION array, dimension (2)
The components of the updating vector.
DELTA
DELTA is DOUBLE PRECISION array, dimension (2)
The vector DELTA contains the information necessary
to construct the eigenvectors.
RHO
RHO is DOUBLE PRECISION
The scalar in the symmetric updating formula.
DLAM
DLAM is DOUBLE PRECISION
The computed lambda_I, the I-th updated eigenvalue.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Ren-Cang Li, Computer Science Division, University of
California at Berkeley, USA
Definition at line 110 of file dlaed5.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |