table of contents
dposv.f(3) | LAPACK | dposv.f(3) |
NAME¶
dposv.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dposv (UPLO, N, NRHS, A,
LDA, B, LDB, INFO)
DPOSV computes the solution to system of linear equations A * X = B for PO
matrices
Function/Subroutine Documentation¶
subroutine dposv (character UPLO, integer N, integer NRHS, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldb, * ) B, integer LDB, integer INFO)¶
DPOSV computes the solution to system of linear equations A * X = B for PO matrices
Purpose:
DPOSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric positive definite matrix and X and B
are N-by-NRHS matrices.
The Cholesky decomposition is used to factor A as
A = U**T* U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is a lower triangular
matrix. The factored form of A is then used to solve the system of
equations A * X = B.
Parameters:
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i of A is not
positive definite, so the factorization could not be
completed, and the solution has not been computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Definition at line 132 of file dposv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |