table of contents
dsgesv.f(3) | LAPACK | dsgesv.f(3) |
NAME¶
dsgesv.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dsgesv (N, NRHS, A, LDA,
IPIV, B, LDB, X, LDX, WORK, SWORK, ITER, INFO)
DSGESV computes the solution to system of linear equations A * X = B for
GE matrices (mixed precision with iterative refinement)
Function/Subroutine Documentation¶
subroutine dsgesv (integer N, integer NRHS, double precision, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, double precision, dimension( ldb, * ) B, integer LDB, double precision, dimension( ldx, * ) X, integer LDX, double precision, dimension( n, * ) WORK, real, dimension( * ) SWORK, integer ITER, integer INFO)¶
DSGESV computes the solution to system of linear equations A * X = B for GE matrices (mixed precision with iterative refinement)
Purpose:
DSGESV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
DSGESV first attempts to factorize the matrix in SINGLE PRECISION
and use this factorization within an iterative refinement procedure
to produce a solution with DOUBLE PRECISION normwise backward error
quality (see below). If the approach fails the method switches to a
DOUBLE PRECISION factorization and solve.
The iterative refinement is not going to be a winning strategy if
the ratio SINGLE PRECISION performance over DOUBLE PRECISION
performance is too small. A reasonable strategy should take the
number of right-hand sides and the size of the matrix into account.
This might be done with a call to ILAENV in the future. Up to now, we
always try iterative refinement.
The iterative refinement process is stopped if
ITER > ITERMAX
or for all the RHS we have:
RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
where
o ITER is the number of the current iteration in the iterative
refinement process
o RNRM is the infinity-norm of the residual
o XNRM is the infinity-norm of the solution
o ANRM is the infinity-operator-norm of the matrix A
o EPS is the machine epsilon returned by DLAMCH('Epsilon')
The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
respectively.
Parameters:
N
N is INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0.
NRHS
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A
A is DOUBLE PRECISION array,
dimension (LDA,N)
On entry, the N-by-N coefficient matrix A.
On exit, if iterative refinement has been successfully used
(INFO.EQ.0 and ITER.GE.0, see description below), then A is
unchanged, if double precision factorization has been used
(INFO.EQ.0 and ITER.LT.0, see description below), then the
array A contains the factors L and U from the factorization
A = P*L*U; the unit diagonal elements of L are not stored.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV
IPIV is INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P;
row i of the matrix was interchanged with row IPIV(i).
Corresponds either to the single precision factorization
(if INFO.EQ.0 and ITER.GE.0) or the double precision
factorization (if INFO.EQ.0 and ITER.LT.0).
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The N-by-NRHS right hand side matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
If INFO = 0, the N-by-NRHS solution matrix X.
LDX
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
WORK
WORK is DOUBLE PRECISION array, dimension (N,NRHS)
This array is used to hold the residual vectors.
SWORK
SWORK is REAL array, dimension (N*(N+NRHS))
This array is used to use the single precision matrix and the
right-hand sides or solutions in single precision.
ITER
ITER is INTEGER
< 0: iterative refinement has failed, double precision
factorization has been performed
-1 : the routine fell back to full precision for
implementation- or machine-specific reasons
-2 : narrowing the precision induced an overflow,
the routine fell back to full precision
-3 : failure of SGETRF
-31: stop the iterative refinement after the 30th
iterations
> 0: iterative refinement has been successfully used.
Returns the number of iterations
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) computed in DOUBLE PRECISION is
exactly zero. The factorization has been completed,
but the factor U is exactly singular, so the solution
could not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2016
Definition at line 197 of file dsgesv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |