Scroll to navigation

zgebd2.f(3) LAPACK zgebd2.f(3)

NAME

zgebd2.f

SYNOPSIS

Functions/Subroutines


subroutine zgebd2 (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO)
ZGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.

Function/Subroutine Documentation

subroutine zgebd2 (integer M, integer N, complex*16, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) D, double precision, dimension( * ) E, complex*16, dimension( * ) TAUQ, complex*16, dimension( * ) TAUP, complex*16, dimension( * ) WORK, integer INFO)

ZGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.

Purpose:


ZGEBD2 reduces a complex general m by n matrix A to upper or lower
real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.

Parameters:

M


M is INTEGER
The number of rows in the matrix A. M >= 0.

N


N is INTEGER
The number of columns in the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the m by n general matrix to be reduced.
On exit,
if m >= n, the diagonal and the first superdiagonal are
overwritten with the upper bidiagonal matrix B; the
elements below the diagonal, with the array TAUQ, represent
the unitary matrix Q as a product of elementary
reflectors, and the elements above the first superdiagonal,
with the array TAUP, represent the unitary matrix P as
a product of elementary reflectors;
if m < n, the diagonal and the first subdiagonal are
overwritten with the lower bidiagonal matrix B; the
elements below the first subdiagonal, with the array TAUQ,
represent the unitary matrix Q as a product of
elementary reflectors, and the elements above the diagonal,
with the array TAUP, represent the unitary matrix P as
a product of elementary reflectors.
See Further Details.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

D


D is DOUBLE PRECISION array, dimension (min(M,N))
The diagonal elements of the bidiagonal matrix B:
D(i) = A(i,i).

E


E is DOUBLE PRECISION array, dimension (min(M,N)-1)
The off-diagonal elements of the bidiagonal matrix B:
if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

TAUQ


TAUQ is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the unitary matrix Q. See Further Details.

TAUP


TAUP is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors which
represent the unitary matrix P. See Further Details.

WORK


WORK is COMPLEX*16 array, dimension (max(M,N))

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

June 2017

Further Details:


The matrices Q and P are represented as products of elementary
reflectors:
If m >= n,
Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
where tauq and taup are complex scalars, and v and u are complex
vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
If m < n,
Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
Each H(i) and G(i) has the form:
H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
where tauq and taup are complex scalars, v and u are complex vectors;
v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
tauq is stored in TAUQ(i) and taup in TAUP(i).
The contents of A on exit are illustrated by the following examples:
m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
( v1 v2 v3 v4 v5 )
where d and e denote diagonal and off-diagonal elements of B, vi
denotes an element of the vector defining H(i), and ui an element of
the vector defining G(i).

Definition at line 191 of file zgebd2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0