table of contents
zgehrd.f(3) | LAPACK | zgehrd.f(3) |
NAME¶
zgehrd.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine zgehrd (N, ILO, IHI, A, LDA, TAU,
WORK, LWORK, INFO)
ZGEHRD
Function/Subroutine Documentation¶
subroutine zgehrd (integer N, integer ILO, integer IHI, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( * ) TAU, complex*16, dimension( * ) WORK, integer LWORK, integer INFO)¶
ZGEHRD
Purpose:
ZGEHRD reduces a complex general matrix A to upper Hessenberg form H by
an unitary similarity transformation: Q**H * A * Q = H .
Parameters:
N
N is INTEGER
The order of the matrix A. N >= 0.
ILO
ILO is INTEGER
IHI
IHI is INTEGER
It is assumed that A is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to ZGEBAL; otherwise they should be
set to 1 and N respectively. See Further Details.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N general matrix to be reduced.
On exit, the upper triangle and the first subdiagonal of A
are overwritten with the upper Hessenberg matrix H, and the
elements below the first subdiagonal, with the array TAU,
represent the unitary matrix Q as a product of elementary
reflectors. See Further Details.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU
TAU is COMPLEX*16 array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
zero.
WORK
WORK is COMPLEX*16 array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The length of the array WORK. LWORK >= max(1,N).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
The matrix Q is represented as a product of (ihi-ilo) elementary
reflectors
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
exit in A(i+2:ihi,i), and tau in TAU(i).
The contents of A are illustrated by the following example, with
n = 7, ilo = 2 and ihi = 6:
on entry, on exit,
( a a a a a a a ) ( a a h h h h a )
( a a a a a a ) ( a h h h h a )
( a a a a a a ) ( h h h h h h )
( a a a a a a ) ( v2 h h h h h )
( a a a a a a ) ( v2 v3 h h h h )
( a a a a a a ) ( v2 v3 v4 h h h )
( a ) ( a )
where a denotes an element of the original matrix A, h denotes a
modified element of the upper Hessenberg matrix H, and vi denotes an
element of the vector defining H(i).
This file is a slight modification of LAPACK-3.0's DGEHRD
subroutine incorporating improvements proposed by Quintana-Orti and
Van de Geijn (2006). (See DLAHR2.)
Definition at line 169 of file zgehrd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |