Scroll to navigation

zgemlqt.f(3) LAPACK zgemlqt.f(3)

NAME

zgemlqt.f

SYNOPSIS

Functions/Subroutines


subroutine zgemlqt (SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT, C, LDC, WORK, INFO)
ZGEMLQT

Function/Subroutine Documentation

subroutine zgemlqt (character SIDE, character TRANS, integer M, integer N, integer K, integer MB, complex*16, dimension( ldv, * ) V, integer LDV, complex*16, dimension( ldt, * ) T, integer LDT, complex*16, dimension( ldc, * ) C, integer LDC, complex*16, dimension( * ) WORK, integer INFO)

ZGEMLQT

Purpose:


ZGEMLQT overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q C C Q
TRANS = 'C': Q**H C C Q**H
where Q is a complex orthogonal matrix defined as the product of K
elementary reflectors:
Q = H(1) H(2) . . . H(K) = I - V T V**H
generated using the compact WY representation as returned by ZGELQT.
Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.

Parameters:

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Transpose, apply Q**H.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

MB


MB is INTEGER
The block size used for the storage of T. K >= MB >= 1.
This must be the same value of MB used to generate T
in DGELQT.

V


V is COMPLEX*16 array, dimension
(LDV,M) if SIDE = 'L',
(LDV,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGELQT in the first K rows of its array argument A.

LDV


LDV is INTEGER
The leading dimension of the array V. LDV >= max(1,K).

T


T is COMPLEX*16 array, dimension (LDT,K)
The upper triangular factors of the block reflectors
as returned by DGELQT, stored as a MB-by-K matrix.

LDT


LDT is INTEGER
The leading dimension of the array T. LDT >= MB.

C


C is COMPLEX*16 array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX*16 array. The dimension of
WORK is N*MB if SIDE = 'L', or M*MB if SIDE = 'R'.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2017

Definition at line 170 of file zgemlqt.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0