table of contents
zhbgst.f(3) | LAPACK | zhbgst.f(3) |
NAME¶
zhbgst.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine zhbgst (VECT, UPLO, N, KA, KB, AB, LDAB,
BB, LDBB, X, LDX, WORK, RWORK, INFO)
ZHBGST
Function/Subroutine Documentation¶
subroutine zhbgst (character VECT, character UPLO, integer N, integer KA, integer KB, complex*16, dimension( ldab, * ) AB, integer LDAB, complex*16, dimension( ldbb, * ) BB, integer LDBB, complex*16, dimension( ldx, * ) X, integer LDX, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer INFO)¶
ZHBGST
Purpose:
ZHBGST reduces a complex Hermitian-definite banded generalized
eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
such that C has the same bandwidth as A.
B must have been previously factorized as S**H*S by ZPBSTF, using a
split Cholesky factorization. A is overwritten by C = X**H*A*X, where
X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
bandwidth of A.
Parameters:
VECT
VECT is CHARACTER*1
= 'N': do not form the transformation matrix X;
= 'V': form X.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
KA
KA is INTEGER
The number of superdiagonals of the matrix A if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= 0.
KB
KB is INTEGER
The number of superdiagonals of the matrix B if UPLO = 'U',
or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
AB
AB is COMPLEX*16 array, dimension (LDAB,N)
On entry, the upper or lower triangle of the Hermitian band
matrix A, stored in the first ka+1 rows of the array. The
j-th column of A is stored in the j-th column of the array AB
as follows:
if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
On exit, the transformed matrix X**H*A*X, stored in the same
format as A.
LDAB
LDAB is INTEGER
The leading dimension of the array AB. LDAB >= KA+1.
BB
BB is COMPLEX*16 array, dimension (LDBB,N)
The banded factor S from the split Cholesky factorization of
B, as returned by ZPBSTF, stored in the first kb+1 rows of
the array.
LDBB
LDBB is INTEGER
The leading dimension of the array BB. LDBB >= KB+1.
X
X is COMPLEX*16 array, dimension (LDX,N)
If VECT = 'V', the n-by-n matrix X.
If VECT = 'N', the array X is not referenced.
LDX
LDX is INTEGER
The leading dimension of the array X.
LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
WORK
WORK is COMPLEX*16 array, dimension (N)
RWORK
RWORK is DOUBLE PRECISION array, dimension (N)
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Definition at line 167 of file zhbgst.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |