Scroll to navigation

zhptrd.f(3) LAPACK zhptrd.f(3)

NAME

zhptrd.f

SYNOPSIS

Functions/Subroutines


subroutine zhptrd (UPLO, N, AP, D, E, TAU, INFO)
ZHPTRD

Function/Subroutine Documentation

subroutine zhptrd (character UPLO, integer N, complex*16, dimension( * ) AP, double precision, dimension( * ) D, double precision, dimension( * ) E, complex*16, dimension( * ) TAU, integer INFO)

ZHPTRD

Purpose:


ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
real symmetric tridiagonal form T by a unitary similarity
transformation: Q**H * A * Q = T.

Parameters:

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.

N


N is INTEGER
The order of the matrix A. N >= 0.

AP


AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the unitary
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the unitary matrix Q as a product
of elementary reflectors. See Further Details.

D


D is DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).

E


E is DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

TAU


TAU is COMPLEX*16 array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:


If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
overwriting A(i+2:n,i), and tau is stored in TAU(i).

Definition at line 153 of file zhptrd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0