table of contents
zlaqp2.f(3) | LAPACK | zlaqp2.f(3) |
NAME¶
zlaqp2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine zlaqp2 (M, N, OFFSET, A, LDA,
JPVT, TAU, VN1, VN2, WORK)
ZLAQP2 computes a QR factorization with column pivoting of the matrix
block.
Function/Subroutine Documentation¶
subroutine zlaqp2 (integer M, integer N, integer OFFSET, complex*16, dimension( lda, * ) A, integer LDA, integer, dimension( * ) JPVT, complex*16, dimension( * ) TAU, double precision, dimension( * ) VN1, double precision, dimension( * ) VN2, complex*16, dimension( * ) WORK)¶
ZLAQP2 computes a QR factorization with column pivoting of the matrix block.
Purpose:
ZLAQP2 computes a QR factorization with column pivoting of
the block A(OFFSET+1:M,1:N).
The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.
Parameters:
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
OFFSET
OFFSET is INTEGER
The number of rows of the matrix A that must be pivoted
but no factorized. OFFSET >= 0.
A
A is COMPLEX*16 array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the upper triangle of block A(OFFSET+1:M,1:N) is
the triangular factor obtained; the elements in block
A(OFFSET+1:M,1:N) below the diagonal, together with the
array TAU, represent the orthogonal matrix Q as a product of
elementary reflectors. Block A(1:OFFSET,1:N) has been
accordingly pivoted, but no factorized.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
JPVT
JPVT is INTEGER array, dimension (N)
On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
to the front of A*P (a leading column); if JPVT(i) = 0,
the i-th column of A is a free column.
On exit, if JPVT(i) = k, then the i-th column of A*P
was the k-th column of A.
TAU
TAU is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors.
VN1
VN1 is DOUBLE PRECISION array, dimension (N)
The vector with the partial column norms.
VN2
VN2 is DOUBLE PRECISION array, dimension (N)
The vector with the exact column norms.
WORK
WORK is COMPLEX*16 array, dimension (N)
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
G. Quintana-Orti, Depto. de Informatica, Universidad
Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
Partial column norm updating strategy modified on April 2011 Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia.
References:
LAPACK Working Note 176
Definition at line 151 of file zlaqp2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |