table of contents
cgemlq.f(3) | LAPACK | cgemlq.f(3) |
NAME¶
cgemlq.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine cgemlq (SIDE, TRANS, M, N, K, A,
LDA, T, TSIZE, C, LDC, WORK, LWORK, INFO)
Function/Subroutine Documentation¶
subroutine cgemlq (character SIDE, character TRANS, integer M, integer N, integer K, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) T, integer TSIZE, complex, dimension( ldc, * ) C, integer LDC, complex, dimension( * ) WORK, integer LWORK, integer INFO)¶
Purpose:
CGEMLQ overwrites the general real M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix defined as the product of blocked elementary reflectors computed by short wide LQ factorization (CGELQ)
Parameters:
SIDE is CHARACTER*1
= 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right.
TRANS
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.
M
M is INTEGER
The number of rows of the matrix A. M >=0.
N
N is INTEGER
The number of columns of the matrix C. N >= 0.
K
K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A
A is COMPLEX array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
Part of the data structure to represent Q as returned by CGELQ.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).
T
T is COMPLEX array, dimension (MAX(5,TSIZE)).
Part of the data structure to represent Q as returned by CGELQ.
TSIZE
TSIZE is INTEGER
The dimension of the array T. TSIZE >= 5.
C
C is COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
(workspace) COMPLEX array, dimension (MAX(1,LWORK))
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If LWORK = -1, then a workspace query is assumed. The routine
only calculates the size of the WORK array, returns this
value as WORK(1), and no error message related to WORK
is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
These details are particular for this LAPACK implementation. Users should not take them for granted. These details may change in the future, and are unlikely not true for another LAPACK implementation. These details are relevant if one wants to try to understand the code. They are not part of the interface.
In this version,
T(2): row block size (MB) T(3): column block size (NB) T(6:TSIZE): data structure needed for Q, computed by CLASWQR or CGELQT
Depending on the matrix dimensions M and N, and row and column block sizes MB and NB returned by ILAENV, CGELQ will use either CLASWLQ (if the matrix is wide-and-short) or CGELQT to compute the LQ factorization. This version of CGEMLQ will use either CLAMSWLQ or CGEMLQT to multiply matrix Q by another matrix. Further Details in CLAMSWLQ or CGEMLQT.
Definition at line 169 of file cgemlq.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |