table of contents
cgeqlf.f(3) | LAPACK | cgeqlf.f(3) |
NAME¶
cgeqlf.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine cgeqlf (M, N, A, LDA, TAU, WORK,
LWORK, INFO)
CGEQLF
Function/Subroutine Documentation¶
subroutine cgeqlf (integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, integer INFO)¶
CGEQLF
Purpose:
CGEQLF computes a QL factorization of a complex M-by-N matrix A:
A = Q * L.
Parameters:
M
M is INTEGER
The number of rows of the matrix A. M >= 0.
N
N is INTEGER
The number of columns of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if m >= n, the lower triangle of the subarray
A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
if m <= n, the elements on and below the (n-m)-th
superdiagonal contain the M-by-N lower trapezoidal matrix L;
the remaining elements, with the array TAU, represent the
unitary matrix Q as a product of elementary reflectors
(see Further Details).
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is COMPLEX array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).
WORK
WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
For optimum performance LWORK >= N*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Further Details:
The matrix Q is represented as a product of elementary reflectors
Q = H(k) . . . H(2) H(1), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
A(1:m-k+i-1,n-k+i), and tau in TAU(i).
Definition at line 140 of file cgeqlf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |