table of contents
csytri_3x.f(3) | LAPACK | csytri_3x.f(3) |
NAME¶
csytri_3x.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine csytri_3x (UPLO, N, A, LDA, E,
IPIV, WORK, NB, INFO)
CSYTRI_3X
Function/Subroutine Documentation¶
subroutine csytri_3x (character UPLO, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) E, integer, dimension( * ) IPIV, complex, dimension( n+nb+1, * ) WORK, integer NB, integer INFO)¶
CSYTRI_3X
Purpose:
CSYTRI_3X computes the inverse of a complex symmetric indefinite
matrix A using the factorization computed by CSYTRF_RK or CSYTRF_BK:
A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
where U (or L) is unit upper (or lower) triangular matrix,
U**T (or L**T) is the transpose of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is symmetric and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the blocked version of the algorithm, calling Level 3 BLAS.
Parameters:
UPLO
UPLO is CHARACTER*1
Specifies whether the details of the factorization are
stored as an upper or lower triangular matrix.
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N
N is INTEGER
The order of the matrix A. N >= 0.
A
A is COMPLEX array, dimension (LDA,N)
On entry, diagonal of the block diagonal matrix D and
factors U or L as computed by CSYTRF_RK and CSYTRF_BK:
a) ONLY diagonal elements of the symmetric block diagonal
matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
(superdiagonal (or subdiagonal) elements of D
should be provided on entry in array E), and
b) If UPLO = 'U': factor U in the superdiagonal part of A.
If UPLO = 'L': factor L in the subdiagonal part of A.
On exit, if INFO = 0, the symmetric inverse of the original
matrix.
If UPLO = 'U': the upper triangular part of the inverse
is formed and the part of A below the diagonal is not
referenced;
If UPLO = 'L': the lower triangular part of the inverse
is formed and the part of A above the diagonal is not
referenced.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
E
E is COMPLEX array, dimension (N)
On entry, contains the superdiagonal (or subdiagonal)
elements of the symmetric block diagonal matrix D
with 1-by-1 or 2-by-2 diagonal blocks, where
If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) not referenced;
If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) not referenced.
NOTE: For 1-by-1 diagonal block D(k), where
1 <= k <= N, the element E(k) is not referenced in both
UPLO = 'U' or UPLO = 'L' cases.
IPIV
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CSYTRF_RK or CSYTRF_BK.
WORK
WORK is COMPLEX array, dimension (N+NB+1,NB+3).
NB
NB is INTEGER
Block size.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2017
Contributors:
June 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley
Definition at line 161 of file csytri_3x.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |