Scroll to navigation

cunmlq.f(3) LAPACK cunmlq.f(3)

NAME

cunmlq.f

SYNOPSIS

Functions/Subroutines


subroutine cunmlq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
CUNMLQ

Function/Subroutine Documentation

subroutine cunmlq (character SIDE, character TRANS, integer M, integer N, integer K, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( ldc, * ) C, integer LDC, complex, dimension( * ) WORK, integer LWORK, integer INFO)

CUNMLQ

Purpose:


CUNMLQ overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k
elementary reflectors
Q = H(k)**H . . . H(2)**H H(1)**H
as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.

Parameters:

SIDE


SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.

TRANS


TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.

M


M is INTEGER
The number of rows of the matrix C. M >= 0.

N


N is INTEGER
The number of columns of the matrix C. N >= 0.

K


K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.

A


A is COMPLEX array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
CGELQF in the first k rows of its array argument A.

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).

TAU


TAU is COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by CGELQF.

C


C is COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

LDC


LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).

WORK


WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK


LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For good performance, LWORK should generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 170 of file cunmlq.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0