table of contents
dla_gbamv.f(3) | LAPACK | dla_gbamv.f(3) |
NAME¶
dla_gbamv.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dla_gbamv (TRANS, M, N, KL, KU, ALPHA,
AB, LDAB, X, INCX, BETA, Y, INCY)
DLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Function/Subroutine Documentation¶
subroutine dla_gbamv (integer TRANS, integer M, integer N, integer KL, integer KU, double precision ALPHA, double precision, dimension( ldab, * ) AB, integer LDAB, double precision, dimension( * ) X, integer INCX, double precision BETA, double precision, dimension( * ) Y, integer INCY)¶
DLA_GBAMV performs a matrix-vector operation to calculate error bounds.
Purpose:
DLA_GBAMV performs one of the matrix-vector operations
y := alpha*abs(A)*abs(x) + beta*abs(y),
or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
This function is primarily used in calculating error bounds.
To protect against underflow during evaluation, components in
the resulting vector are perturbed away from zero by (N+1)
times the underflow threshold. To prevent unnecessarily large
errors for block-structure embedded in general matrices,
"symbolically" zero components are not perturbed. A zero
entry is considered "symbolic" if all multiplications involved
in computing that entry have at least one zero multiplicand.
Parameters:
TRANS
TRANS is INTEGER
On entry, TRANS specifies the operation to be performed as
follows:
BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y)
BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y)
Unchanged on exit.
M
M is INTEGER
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.
N
N is INTEGER
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.
KL
KL is INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU
KU is INTEGER
The number of superdiagonals within the band of A. KU >= 0.
ALPHA
ALPHA is DOUBLE PRECISION
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
AB
AB is DOUBLE PRECISION array, dimension ( LDAB, n )
Before entry, the leading m by n part of the array AB must
contain the matrix of coefficients.
Unchanged on exit.
LDAB
LDAB is INTEGER
On entry, LDA specifies the first dimension of AB as declared
in the calling (sub) program. LDAB must be at least
max( 1, m ).
Unchanged on exit.
X
X is DOUBLE PRECISION array, dimension
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.
Unchanged on exit.
INCX
INCX is INTEGER
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
BETA
BETA is DOUBLE PRECISION
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.
Y
Y is DOUBLE PRECISION array, dimension
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
INCY
INCY is INTEGER
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
Level 2 Blas routine.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2017
Definition at line 187 of file dla_gbamv.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |