table of contents
dlarf.f(3) | LAPACK | dlarf.f(3) |
NAME¶
dlarf.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dlarf (SIDE, M, N, V, INCV, TAU, C, LDC,
WORK)
DLARF applies an elementary reflector to a general rectangular matrix.
Function/Subroutine Documentation¶
subroutine dlarf (character SIDE, integer M, integer N, double precision, dimension( * ) V, integer INCV, double precision TAU, double precision, dimension( ldc, * ) C, integer LDC, double precision, dimension( * ) WORK)¶
DLARF applies an elementary reflector to a general rectangular matrix.
Purpose:
DLARF applies a real elementary reflector H to a real m by n matrix
C, from either the left or the right. H is represented in the form
H = I - tau * v * v**T
where tau is a real scalar and v is a real vector.
If tau = 0, then H is taken to be the unit matrix.
Parameters:
SIDE
SIDE is CHARACTER*1
= 'L': form H * C
= 'R': form C * H
M
M is INTEGER
The number of rows of the matrix C.
N
N is INTEGER
The number of columns of the matrix C.
V
V is DOUBLE PRECISION array, dimension
(1 + (M-1)*abs(INCV)) if SIDE = 'L'
or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
The vector v in the representation of H. V is not used if
TAU = 0.
INCV
INCV is INTEGER
The increment between elements of v. INCV <> 0.
TAU
TAU is DOUBLE PRECISION
The value tau in the representation of H.
C
C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is DOUBLE PRECISION array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Definition at line 126 of file dlarf.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |