table of contents
dtgexc.f(3) | LAPACK | dtgexc.f(3) |
NAME¶
dtgexc.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine dtgexc (WANTQ, WANTZ, N, A, LDA,
B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, WORK, LWORK, INFO)
DTGEXC
Function/Subroutine Documentation¶
subroutine dtgexc (logical WANTQ, logical WANTZ, integer N, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldb, * ) B, integer LDB, double precision, dimension( ldq, * ) Q, integer LDQ, double precision, dimension( ldz, * ) Z, integer LDZ, integer IFST, integer ILST, double precision, dimension( * ) WORK, integer LWORK, integer INFO)¶
DTGEXC
Purpose:
DTGEXC reorders the generalized real Schur decomposition of a real
matrix pair (A,B) using an orthogonal equivalence transformation
(A, B) = Q * (A, B) * Z**T,
so that the diagonal block of (A, B) with row index IFST is moved
to row ILST.
(A, B) must be in generalized real Schur canonical form (as returned
by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
Parameters:
WANTQ
WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ
WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix A in generalized real Schur canonical
form.
On exit, the updated matrix A, again in generalized
real Schur canonical form.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B
B is DOUBLE PRECISION array, dimension (LDB,N)
On entry, the matrix B in generalized real Schur canonical
form (A,B).
On exit, the updated matrix B, again in generalized
real Schur canonical form (A,B).
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q
Q is DOUBLE PRECISION array, dimension (LDQ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
If WANTQ = .FALSE., Q is not referenced.
LDQ
LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
Z
Z is DOUBLE PRECISION array, dimension (LDZ,N)
On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
If WANTZ = .FALSE., Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
IFST
IFST is INTEGER
ILST
ILST is INTEGER
Specify the reordering of the diagonal blocks of (A, B).
The block with row index IFST is moved to row ILST, by a
sequence of swapping between adjacent blocks.
On exit, if IFST pointed on entry to the second row of
a 2-by-2 block, it is changed to point to the first row;
ILST always points to the first row of the block in its
final position (which may differ from its input value by
+1 or -1). 1 <= IFST, ILST <= N.
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER
=0: successful exit.
<0: if INFO = -i, the i-th argument had an illegal value.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned. (A, B) may have been partially reordered,
and ILST points to the first row of the current
position of the block being moved.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing
Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
Definition at line 222 of file dtgexc.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |